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Abstract

The problem of vehicle-bridge interaction can be followed in the literature from the year 1849. It was induced by the
collapse of the Chester Rail Bridge in England in the year 1847. At the early stage the analytical methods were applied.
The development of computers brings the change in the approach to the used methods of solution. The Finite Element
Methods and the Component Element Methods represent the revolution and qualitative jump in the development. The
dynamic deflections and the values of dynamic coefficients are remarkable from the point of bridge designers. The
analysis of dynamic coefficients on the frequency ratio of natural frequency of vehicle and natural frequency of a bridge

and dependence of dynamic coefficients on the speed of vehicle motion are presented in this contribution.
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1. Introduction

The problem of vehicle-bridge interaction can be
followed in the literature from the year 1849. It was
induced by the collapse of the Chester Rail Bridge in
England in the year 1847 [1]. While the problem of
dynamic of railway bridges was followed from the year
1847 the problems of dynamic of highway bridges start
to be followed in the 20™ century only. The 1* important
report on this topic was published by the American
Society of Civil Engineers [2]. Total review about results
of solution to the year 1975 was published by Tseng
Huang in [3]. Also in the Czech and Slovak Republic
important works arose in this field. In the area of railway
bridges they were published by Fryba, L. [4] and in the
area of highway bridges they were published by Melcer,
J. [5]. Numerical modeling of the vehicle motion along
bridge structure requires paying attention minimally to
these facts: creation of computing models of vehicles,
creation of computing models of bridges, creation of
computing programs for the solution of the equations of
motion and displaying of obtained results.

2. Computing models of vehicles

The discrete computing models of vehicles can be
created on three qualitative different levels: 1 D—quarter
model, 2D — plane model and 3D — space model. Every
model has its advantages and disadvantages and under
certain assumptions it can be used for the solution

of real practical problems. Possible plane computing
models of a lorry and a bus are shown in the Fig. 1.
The relation between the components of displacements
{r(?)}, corresponding to individual degrees of freedom,
and deformations of jointing members {d(7)} gets the
transpose static matrix [A]”

{d@} =[A]"- {r(@®} (1

Dependence between elastic forces in jointing
members (in the sense of action of mass objects on
jointing members) and its deformations is described
by the equation

{F. (0} = [K] - {d()} 2

where [K] is the stiffness matrix of jointing members.
Dependence of damping forces on the velocity of

deformations {d(#)} is described by the equation
{F,()} = b] - {d(1)} (3)

where [b] is damping matrix. By dot is denoted
derivation with respect of time #. Friction forces are
considered as

if{d@)} >+d, {F))=+{f,
{F ()} =-{f}, Q)

{F Oy =+{f". {d()} / d, .

if {d(1)} <-d,
ifabs{d(r)} < d,

17



structure

Jozef Melcer

Resulting forces in jointing members in action on
mass objects are

{Fs (O} = - {F (0} - {F,(0} - {F (O} . )

Sign (-) is due to the principle of action and reaction.
From the forces in jointing members {F (7)} the static
equivalents corresponding to individual degrees of
freedom {F (1)} are calculated

{F, (0} = [A] . {F (D)} . (6)

To the forces corresponding to individual degrees of
freedom {F, (#)} the gravity forces {F} and reactions
in support {F_ (7)} must be added. In this manner we
obtain the complete vector of forces {F,(#)} acting on
the computing model of vehicle

{F (0} = Fg, (O} + {F} + {F, (O} . (7

The system of equations of motion describing the
vibration of the computing model of vehicle is then
expressed by the relation

[m] . {F(0} = {F, ()}, @®)

where [m] is mass matrix.
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Fig. 1. Plane computing models of a lorry and a bus
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3. Computing model of a bridge

For the description of bridge vibration the simplified
computing model in the form of simply supported Euler
beam excited by moving forces is adopted, Fig. 2.

(3)

=i Tv(x)

I

Fig. 2. Computing model of a bridge as a simply
supported Euler beam

Equation of motion can be written as

*y(x,t) O y(x,t)
i

oy(x,t
#2000, P80 i)

©)

In the next the following identification will be used:
h(x) respectively h(f) — function defining the road
unevenness

y(x,t) —dynamic deflection curve of the beam axis
v(x,t) — profile of the runway defined by the term (10)

v(x,0) = y(x,1) + h(x) (10)
The assumption about the shape of dynamic deflection
curve is adopted in the form

y(x,0) = f(t) -y (x,0) (11)

where f(7) is a coefficient of proportionality dependent
on the time # and v (x,7) is the static deflection curve
induced by static effect of vehicle.

> . NTeX
X,t) = L () - sin 5
w0 =Y 1, l

n=1

(12)

where
I 1
t:—- — - —_—
17,(1) ] (”] ;
" G n-mw-x (13)
. zgj'—‘{~sin J
‘3 on [

[ is span of the beam, G, is weight j-th vehicle axis.
Coefficient ¢ . = 1, if the corresponding axis is on the
bridge and 8]: = 0, if the corresponding axis is outside
the bridge. For the practical use only the 1% member
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of infinite series is used for the calculation. Than
wn) =m(e) sin == (14)

and in the case of plane computing model of vehicle

771()— 2 (ﬂ) [28 -G -sin ll} (15)

Expression for y(x,7) than can be written as

vy = fO)-yx0=

. . 16
= /() (@) sin == = (1) -sin == (e
and expression for the profile of the runway is
V(x,1) = y(x, 1) + h(x) = q (1) sin% +h(x)  (17)

q(?) in equations (16) a (17) is generalized Lagrange

coordinate. Assume that y(x,7)=q(¢)-sin(z-x/1),
than

84;@ D _ ) sm% (18)
azy(x,t)_.. X

7 =¢(t)-sin ; (19)
ay(" D _ - sm% (20)

After substitute (18), (19), (20) into equation (9) we
obtain

4

E-1q() " —sin 4 () -

! 1)
-sinT'+2-,u-a)b-Q(t)-singzp(x,t)
respectively

.. . 71'4
{q(t)-ﬂ+q(t)-2-ﬂ'wb+q(t)-E-1-l—4 :
(22)

: sin% = p(x,1)

The moving forces F ; can be transform by the use of
Dirac 6 function on the continual load

P = 8, 8(x—x) Fy ;). (23)

For the plane computing model we can write

Pl = ;- 0(x—x;) Fy (1) =

- n-m-x ’ 24)
=> > p, () -sin
Jj  n=l
where
2! . N-T-X
P, ()= n ij (x,2)-sin dx =
, ‘ (25)
n-7-Xx
=g F,,(t)-sin :
Than
p.=>" > p, (t)sin T =
J n=1
ZZ Zgg F, ;()-sin .”.xj-sinn.”.xz
= [ [
N2 . nemeX nemex;
=Z Z—-sm &, Fy (1) -sin (26)
=R !

When we will use only the 1% member of the series
than the expression for p(x,7) can be simplified

X
Fy ()-sin ™1 27)

2 . T-x
X,t)=—-sin——- » ¢&.-
P =2 l Z

4. Results of numerical calculations

Numerical calculations were realised in the
environment of the program system MATLAB. For the
purpose of numerical calculations the parameters of the
prestressed concrete bridge with the span /=29,0 m were
used. Moment of inertia of the cross section /= 1,60622
m*, modulus of elasticity £ = 3,85¢10 N-m, intensity
of the mass x = 19680 kg-m™, circular frequency of
damping @, = 0,1 rad-s". From the aspect of bridge
designers the values of dynamic coefficients versus
speed of vehicle motion are interested. Therefore in
the next the values of dynamic coefficients 6 versus
speed of vehicle motion in interval of /= 0— 120 km/h
are presented, Fig. 3, 4. As the moving vehicles the
lorry Tatra T815 and the bus KAROSA with following
parameters are applied.

Tatra T815:

m, =22 950 kg, m, =910 kg, m, =2 140 kg, I = 62
298 kgm?, [,=932 kg'm?,

k, =287433 N/m, k,= 1522 512 N/m, k, =2 550 600
N/m, k, =k, =5 022 720 N/m,

b, =19 228 kg/s, b, = 260 197 kg/s, b, = 2 746 kg/s,
b,=b,=5 494 kg/s.
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Initial conditions are assumed as:
r,(0)=-0,02m, 7#(0)=0,0

m/s, 7,(0) = 0,0 m, 7,(0) = 0,0 m/s,
r,(0) =-0,002 m, 73(0)=0,0 m/s,
r,(0)=-0,003 m, 7,(0)=0,0 m/s,
r(0)=0,0 m, 75(0) =0,0 m/s.

Dynamic coefficients versus speed of vehicle motion
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Fig. 3. Dynamic coefficients and position of vehicle
versus speed of vehicle motion, T815

KAROSA:

m =18 150 kg, m = 600 kg, m, = 1 250 kg, Iy =330
420 kg'm?,

k, =850 000 N/m, k£, =1 500 000 N/m, k£, =1 700 000
N/m, k, =3 400 000 N/m,

b, =80 000 kg/s, b, = 160 000 kg/s, b, = 4 000 kg/s,
b, =8 000 kg/s.

Initial conditions are assumed as:

7,(0)=-0,02 m, 7;(0) = 0,0 m/s,
r,(0)=0,0m, 7,(0) = 0,0 m/s,
r,0)=-0,01m, 7(0) =0,0 m/s,
r,(0)=-0,009 m, 7,(0)=0,0 m/s.
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The function 8(¥) is not smooth curve. It has many
local maxima and spikes. Its character is connected
with discontinuities in the function x (V) indicating
the position of vehicle on the bridge at the moment
of arising of maximal dynamical deflection in the
mid span of the bridge. The position of spikes in
the function &(F) corresponds to the position of
discontinuities in the function x (V), Figs. 3, 4.

Dynamic coefficients versus speed of vehicle motion
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Fig. 4. Dynamic coefficients and position of vehicle
versus speed of vehicle motion, KAROSA

With respect to the character of the curve o(V) it
would be convenient to approximate the maximal
values of dynamic coefficients by some envelope
curve, for example in the shape

ok=1/(1-a) (28)
or in the shape
ok=1/(1-0,6a). (29)

The dimensionless coefficient o indicates the influence
of the speed of vehicle motion. It is defined as

a=T, /2T, (30)
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T, is the period of bridge vibration in the 1% natural mode
and T, is the transit time of one axle along the bridge.
Every type of vehicle has its own suitable envelope
curve. But envelope curve (28) covers all cases.
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