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A b s t r a c t
The studying the dynamic response of steel-concrete railway bridges of Langer type is huge importance of ensuring the 
safety of such structures under high-speed train loads. Numerical simulations at the design stage require knowledge of 
the modal characteristics: natural frequencies, shapes and damping. In addition, in the dynamics of railway bridges 
subjected to high-speed trains, it is important to check the impact of dynamic effects on the ultimate and serviceability 
limit states. As part of the investigations displacements and accelerations of selected measurement points arising from 
driving the test rolling stock are analyzed. In the first stage, calculations of the eigenvalues and the corresponding 
eigenvectors were carried out in the Robot program for two variants of mass description (distributed and discrete). 
In the second stage, dynamic train passages for various vehicle speeds were examined in terms of displacements and 
accelerations of measurement points by using the authors’ program MES3D. 

Keywords: modal analysis, Newmark method, FEM model, moving load, steel-concrete railway bridges of Langer type

S t r e s z c z e n i e
Badanie odpowiedzi dynamicznej stalowo-betonowych mostów kolejowych typu Langera ma ogromne znaczenie dla za-
pewnienia bezpieczeństwa takich obiektów pod obciążeniem pociągów dużych prędkości. Symulacje numeryczne na eta-
pie projektowania wymagają znajomości charakterystyk modalnych: częstotliwości drgań własnych, form i tłumienia. 
Dodatkowo w dynamice mostów kolejowych poddanych działaniu pociągów szybkobieżnych istotne jest sprawdzenie 
wpływu efektów dynamicznych na stany graniczne nośności i użytkowalności. W ramach badań analizowano przemiesz-
czenia i przyspieszenia wybranych punktów pomiarowych powstałych od jazdy taborem próbnym. W pierwszym etapie 
przeprowadzono obliczenia wartości własnych i odpowiadających im wektorów własnych w programie Robot dla dwóch 
wariantów opisu masy (rozłożonej i dyskretnej). W drugim etapie zbadano przebiegi dynamiczne dla różnych prędkości 
pociągów pod kątem przemieszczeń i przyspieszeń punktów pomiarowych za pomocą autorskiego programu MES3D. 

Słowa kluczowe: analiza modalna, metoda Newmarka, model MES, obciążenie ruchome, stalowo-betonowe 
mosty kolejowe typu Langera
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1. INTRODUCTION
 Nowadays, transport needs are still increasing. 
Bridges ensure a collision-free intersection of 
pedestrian routes with roads, railways and waterways. 
These structures are often characterized by interesting 
architectural forms. This is mainly due to the use of 
modern high-strength materials and the increase in the 
possibilities and accuracy of design calculations, e.g. 
using the finite element method (FEM) in the design 
process. Numerical calculations are often verified 
by in-situ experimental studies [1-8]. The numerical 
simulations of dynamic behavior at the design stage 
require knowledge of the modal characteristics of the 
structural system. These are sets of natural frequencies, 
mode shapes, and damping. There are two general 
methods for determining the modal characteristics 
of structures: analytical and experimental. The first 
one usually employs a modal analysis performed 
on a numerical model [9-15], which can be done at 
the design stage but has limitations resulting from 
simplifying assumptions, mainly concerning damping, 
joint stiffness, and boundary conditions. On the other 
hand, the experimental method comprises conducting 
a field test to determine the modal characteristics 
of the real structure. For identification, controlled 
experiments are performed [16] and most often 
analyzed by experimental modal analysis (EMA) [17, 
18] or operational modal analysis (OMA) [18, 19]. 

In addition, in the dynamics of railway bridges 
subjected to high-speed trains, it is important to 
check the impact of dynamic effects on the ultimate 
and serviceability limit states. Serviceability limit 
states are related to driving safety and passenger 
comfort. An increase in the operating speed results in 
increased actions by railway vehicles on the structure 
and entails the need to solve numerous complex 
engineering problems. From the perspective of 
traffic safety and travel comfort (particularly relevant 
in case of high operating speeds) it is important to 
determine vibration amplitudes for both the vehicle 
and bridge spans and the interacting forces between 
them. Numerical simulations of bridge load tests are 
often performed before they are put into service. Their 
purpose is to verify the actual condition of the structure 
and  correlation of measurement results with theory. 
This enables, among others, commissioning objects 
without the need to carry out costly measurements 
of vehicles acting on the structure other than those 
for which designated tests are required. Currently 
structural analyses are performed mainly using finite 
element computer programs. They provide a very 

accurate representation of a structure with beam, shell 
and solid elements. The modelling method is chosen 
depending on the objective of the analysis. Technical 
problems related to the description of the dynamic 
response of railway bridges are discussed in [20-27].

From the point of view of bridge structures, the 
moving load is one of the most important components 
of the load. The analysis of the impact of the moving 
load on bridge structures is carried out numerically 
or experimentally. The numerical approach 
requires attention to the following issues: creating 
computational models of the vehicle and bridge, 
creating computational programs to solve equations 
of motion. To solve this problem, it is beneficial to 
work with discrete computational models using the 
finite element method. The experimental approach 
focuses on verifying the adopted numerical models 
and monitoring the condition of bridge structures. One 
of the key elements of structural health monitoring 
(SHM) is operational modal analysis. Identification 
of the modal properties of a structural system is  
a process of correlating the dynamic characteristics 
of a numerical model with the physical properties of 
the system obtained from experimental measurements. 
This allows engineers to analyze structural behavior 
and identify potential structural failures.

Polish State Railways’s (PKP) development plans 
include the introduction of express passenger trains 
moving at speeds of up to 250 km/h on the Central 
Railway Main Line (CMK). One of the scientific 
and technical problems related to this is to check the 
dynamic strain of bridge structures on CMK in new 
operating conditions. The basic group of these objects 
are composite beam bridges with a load-bearing 
structure consisting of steel plate girder main beams and 
a reinforced concrete bridge slab. The presented work 
concerns the numerical analysis of the bridge structure 
along the PKP line No. 4 CMK on the section Szeligi - 
Idzikowice at km 26.571/26.578 under dynamic load. 
The subject of the research is the supporting structure 
of the viaduct. It is a steel Langer arch (rigid deck and 
slender arch) located over the S8 expressway (Figs. 1, 
2). In the first stage, calculations of the eigenvalues 
and the corresponding eigenvectors were carried out. 
The modal analysis of the bridge was performed for 
a spatial FEM model. The calculations were carried 
out in the Robot program for two variants of mass 
description (distributed and discrete). In the second 
stage, dynamic passages for various train speeds were 
examined in terms of displacements and accelerations 
of measurement points. Two variants of the load were 
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adopted in the work. The first consists of ES64U4 
electric locomotive located at the beginning and end 
of the train and four 154A type passenger cars (Fig. 
3a). In the first variant the load moves at the following 
speeds: 10, 40, 80, 120, 160, 180 and 200 km/h. Due 
to the symmetry of the structure and the measuring 
points, the load motion was simulated in one direction. 
The second variant consists of the ETR610 Pendolino 
located at the beginning and end of the train and five 
passenger cars (Fig. 3b). The following velocities were 
assumed: 10, 200, 230 and 250 km/h. Seven recording 
points were defined on the structural model. In three 
locations on one side vertical displacements, horizontal 
displacements in two perpendicular directions and 
vertical accelerations were recorded, while in all other 
points only vertical displacements were tracked. The 

calculations were carried out using the proprietary 
MES3D program developed by the authors.

In summary, the manuscript focuses on two themes. 
At first, the analytical identification of the bridge modal 
response is sought (eigenfrequencies are determined in 
two variants of mass representation: concentrated and 
distributed) to enable and improve further numerical 
computations. Secondly, the structural response is 
predicted, in terms of displacements and accelerations, 
for various vehicle speeds of two train load sets. Finally, 
conclusions are formulated on the basis of the obtained 
data to address the serviceability of the object and human 
voyage comfort. The studying the dynamic response of 
steel-concrete railway bridges of Langer type is huge 
importance of ensuring the structural integrity and safety 
of such bridges under high-speed train loads.

Fig. 1. Side view of the bridge (https://www.google.com/
maps)

Fig. 2. Bottom view of the bridge (https://www.google.com/
maps)
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Fig. 3. Two variants of moving load: a) ES64U4 electric locomotive located at the beginning and end of the train and four 
154A type passenger cars, b) ETR610 Pendolino located at the beginning and end of the train and five passenger cars
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2. MATERIAL AND METHODS
2.1. Modal analysis 

One of the basic issues in dynamics of structures is 
to determine the conditions under which the system 
can move around the equilibrium position without 
the action of external forcing forces. The matrix 
differential equation of motion describing this process 
without damping can be written as:

 +  = Mq Kq 0                        (1)

where:  
M	– mass matrix,
K	 – stiffness matrix,
q	 – vector of nodal displacements,
ω	 – eigenfrequency.

Predicting a harmonic solution, suppose: 
2 =−ωq q                               (2)

Substituting expression (2) into equation (1) we 
obtain a homogeneous matrix equation that must be 
satisfied at any arbitrary time t.

( )2−ω =K M 0                          (3)

The trivial solution does not yield the searched 
conditions of the problem as it corresponds to 
equilibrium at rest. The condition for the existence of 
non-zero solutions is the equation:

2det 0−ω =K M                        (4)

After solving the determinant, we obtain an 
algebraic equation with respect to ω whose roots are 
the eigenfrequencies of the structure. These roots are 
real positive numbers, and their number is equal to 
the number of dynamic degrees of freedom (multiple 
roots may be present). Each eigenvalue ωi corresponds 
to a solution q = wi such that:

( )2
i     −ω =iK M w 0                       (5)

The vector wi is called the eigenvector of the i-th 
mode of vibration. It determines the distribution of 
displacements during vibrations with the frequency 
ωi. Eigenvectors are defined up to a constant factor, 
so they can be normalized arbitrarily. The set of 
eigenvectors forms an eigenmatrix W.

[ ] = , , …,   1 2 dW w w w                    (6)

where d is the number of dynamic degrees of freedom.

Modal analysis allows us to effectively solve 
structural problems related to vibration at the design 
or operation stage. Its main application is to compare 
the frequency of excitation of the system with its 
natural frequencies. If these values are close to each 
other or overlap, the phenomenon of resonance 
arises. During resonance, vibration amplitudes can be 
multiplied multiple times, which may lead to failure 
or complete destruction of the structure.

2.2. Newmark method (average acceleration) 
Newmark implicit time integration method is one 

of the oldest and most powerful methods used for 
dynamic analysis of structures and wave propagation 
problems. Newmark’s method, [28], allows the direct 
solution of a second-order differential equation or 
a system of second-order differential equations. 
Consider the matrix equation of motion:

 +  +  =Mq Cq Kq  P                      (7)
with initial conditions:

( ) 00  = q q                              (8)

( ) 00  = q q                               (9)
where: 
M	– mass matrix,
K	 – stiffness matrix,
C	 – damping matrix,
q	 – vector of nodal displacements, 
P	 – vector of nodal load.

Vector P for t ≥ 0 contains components that are 
arbitrary, continuous functions of time. The equation 
in the general case is a description of some non-
stationary dynamic process. Analytical solution 
of the equation of motion for arbitrary forces may 
prove difficult, hence direct methods of numerical 
integration are of great practical importance. If we 
choose a discrete set of points ti on the time axis with 
the integration step h = ti+1 – ti, then the representation 
of the solution of the equation will be the set of vectors 
displacements and velocities. The calculations use 
the Newmark method, which can be formulated by 
expanding the function into a Taylor series

2
i+1 ii i

1=  + h  + h  + 
2

qq q q 
                (10)

i
2 3

i+1 i i i
1 1=  + h  + h  + h  + 
2 6

q q qq q 
         (11)
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Higher derivatives are eliminated from the formulas 
(12) and (13), leaving terms of the second order at 
most. We replace the remaining terms of the Taylor 
expansion with arithmetic means for velocities and 
weighted averages for displacements. 

i+1 i i i+1
1 1=  + h  + h
2 2

q q q q                  (12)

2 2
i 1 i i i i 1

1   h   h   h
2+ +

 = + + −β + β 
 

q q qq q        (13)

where: parameter 10;
2

β∈< > .

From the last relationship, we get:

2
i 1 i 1 i i2

1 1   h   h
2h+ +

  = − − −β  β
−

  
q q q qq  i    (14)

In the Newmark method as an interpolation method, 
the collocation condition is satisfied at the time ‘i+1’.

i+1 i+1 i+1 i+1+ + = M Cq Kqq P             (15a)

2
i 1 i i i2

i i i 1 i i2

2
i i 1 i 1

1 1   – h  – h   
2h

1 1 1  h   h  – h
2 2 h

1  h   
2

+

+

+ +

  −β +  β   


+ + +

−


− −


β 

 − −β + = 
 

M q q q q

 C q q q q q

q Kq P

 



















  

(15b)

After tidying up, we can write:

i+1 i+1= ⋅A q R                         (16)
where:

2
1 1       

2 hh
= + +

ββ
A M C K

i 1 i 1 i i i2

i i i

1 1 1     1   
h 2h

1 1 h 1 1 2  
2 h 2 2 2

+ +
  

= + + + − +  β ββ   
    

+ − + −    β β β   
−











R P q q q M

q q q C

When initiating the solution process, the vector 0q  
is needed to determine the modified vector R1. It can 
be calculated by writing the collocation equation for 
time t = 0 as

( )0 0 0 0=    − − −1q M P Cq Kq             (17)

The numerical solution is always burdened with an 
error resulting from the use of a finite step size, the so-

called discretization error. In addition, there may be 
effects of the so-called parasitic damping, which result 
from the very formulation of the method. In the case 
of the Newmark method, the stability of the scheme 
is determined by the value of the β parameter. For  
0.25 ≤ β ≤ 0.5 the scheme is unconditionally stable. 
For the range 0 ≤ β < 0.25 the scheme is conditionally 
stable with a stability limit.

( )
2h

1 4  
<
ω − β

                     (18)

In our calculations, an unconditionally stable 
variant with a beta parameter of 0.25 was used. For 
the practical application of stability conditions, it is 
necessary to know the highest natural frequency of 
the analyzed structure. This requirement greatly limits 
the possibilities for calculating the limiting time step. 
In addition to stability, the accuracy of the solution 
should also be considered. Unfortunately, the higher 
the stability, the lower the accuracy.

3. EXAMPLE – DESCRIPTION, CALCULATIONS, RESULTS 
AND DISCUSSION

3.1. Description of steel-concrete railway bridge 
of Langer type

The supporting structure of the viaduct is a steel 
Langer arch with rigid deck and slender arch (Fig. 4). 
Technical parameters of the viaduct: theoretical length 
75 m, construction height 1.59 m, crossbar spacing 
2.5 m, main girder spacing 5 m, hangers spacing 7.5 
m. The platform was built of a steel plate girder and 
an orthotropic slab. Steel fixed and movable double-
roller bearings provide support for the spans. For each 
track there are separate supports of the viaduct, which 
are offset from each other because the road under 
the viaduct is laid diagonally. Franc piles support the 
massive abutments of the second geotechnical category 
and retaining walls. The structure is equipped with  
a railway superstructure made of UIC60 rails with SB 
type fastening on reinforced concrete sleepers, where 
rail profiles are placed. The cross-section of the arch 
is a steel box with a height of 1534 mm and a width 
of 730 mm. These dimensions are constant along its 
entire length, but the thickness of the sheet varies: at 
the beginning and end of the arch it is 28 mm, while 
in the middle it is 24 mm (Table 1). The bottom chord 
is built in a similar way, it is also a steel box with  
a constant cross-section along the entire length: 1792 mm 
high and 730 mm wide and of different sheet thickness: 
28 mm at the two ends of the structure and 20 mm in 
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the middle. The load-bearing structure of the deck slab 
is made of the HEB profile. These elements have been 
moved to their actual position using offsets. The arched 
upper chord is connected with rectangular box section 
cross-beams. The structure was modeled in the Autodesk 
Robot program as a spatial structure. Bar elements were 
used to model the steel parts. The reinforced concrete slab 
with a thickness of 30 cm, on which the track is located, 
was modeled using shell elements without reinforcement. 
The computational model contained 548 nodes, 168 bar 
elements and 120 shell elements. The total number of 
generalized coordinates is 3288. The dynamic analysis 
took into account the mass of equipment elements located 
on the bridge: brackets, balustrades, track elements. The 
value per one girder was equal to 1950 kg/m, added to 
the longitudinal members of the bottom chord.

Fig. 4. FEM model of the steel-concrete railway bridge of 
the Langer type

3.2. Modal analysis of railway bridge of Langer type
The modal analysis was performed in the Robot 

program with continuous and discrete mass field 
distributions. In engineering practice, we are most 
often interested in the lowest vibration frequencies. 
In the variant with continuous mass distribution we 
also obtain vibration modes related to the movement 
of individual structural elements, e.g. hangers (Fig. 
5), which might not be of interest to us. Hangers, 
which are fragment of structure in case continuous 
mass distribution can give independent forms of 
vibration. However, their influence on the vibration 
of the entire structure is small. Such vibration modes 
usually do not occur with discrete mass distribution. 
Independent forms of hanger vibrations are directly 
related to the way they are installed in the structure. 
The hangers are hinged to the gusset plate. Slight 
differences between the vibration frequencies result 
from the ways of describing the mass distribution for 
both models in FEM (Table 2). The comparison of 
the first six vibration frequencies for the model with 
concentrated masses and with the distributed mass 
model is shown in Table 2. Further calculations and 
illustrations of the vibration mode shapes are given 
for the to the discrete mass model (Fig. 6).

Table 1. Sections of the supporting structure of the viaduct 

Section

Description Upper chord – external elements Upper chord – middle elements Bottom chord – external element Bottom chord – middle elements

A [cm2] 1494.24 1377.28 1660.15 1385.12

Ix [cm4] 2839631.79 2555241.10 3769659.90 2952872.06

Iy [cm4] 4374418.85 4165103.38 6643890.18 5966576.30

Iz [cm4] 1235736.37 1115075.81 15317361.91 1218094.99

Section

Description Crossbeam – upper chord Crossbeam of the deck slab Hanger Sling

A [cm2] 560.40 306.00 50.27 350.00

Ix [cm4] 470254.32 833.00 398.78 5269.89

Iy [cm4] 423258.02 256900.00 201.06 1429.17

Iz [cm4] 278602.03 14440.00 201.06 72916.67
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Fig. 5. Vibration mode shape related to the local movement 
of an individual hanger

Table 2. The comparison of the first six vibration frequencies 
for the model with concentrated masses and with the 
distributed mass model

Nr form
Frequency [Hz]

Discrete mass Distributed mass

1 1.09 1.10

2 2.14 2.15

3 2.44 2.48

4 3.19 3.21

5 3.69 3.68

6 4.77 4.84

 

 

 

Fig. 6. First six mode shapes of numerical model with 
discrete mass distribution

3.3. Calculations of railway bridge under the influence 
of the moving load

The calculations under the influence of the moving 
load were made in the MES3D program using the 
unconditionally stable variant of the Newmark method 
[28]. Experience shows that in the case of engineering 
analyzes of real objects, it is sufficient to assume that 
the load operates in a non-inertial manner, the time of 
computer simulations is significantly shorter in such 
case.

The calculations did not directly take into account 
the elastic characteristics of the subgrade (track, 
ballast), the fact of indirect load transfer to the 
structure was taken into account by adopting a load 
model in which the pressure of a single concentrated 
force N is replaced by three forces at intervals of 
0.5 m and weighting factors N/4, N/2, N/4. The 
forward motion of the load was assumed in steps of  
∆x = 0.02 m. Based on this the size of the time step 
was determined as h = ∆t = ∆x/v. The layout of the 
pick-up points is shown in Figure 7.
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Fig. 7. Location of recording points

Tables 3 and 4 show the maximum values of 
deflections and accelerations of points obtained for 
the considered travel speeds of the ES64U4 and 
Pendolino trains. On this basis, the values of dynamic 
coefficients were determined for the tested quantities. 
Figures 8-17 shows the dynamic response of selected 
points – vertical deflections of points at one quarter 

and one half of the span under the right girder and 
vertical accelerations at the upper and lower end of 
the hanger in the middle of the span. 

Fig. 8. Dynamic runs of the vertical displacement of the UzP3 
point at the speed of 10 and 200 km/h for the ES64U4 train

Table 3. Displacements and accelerations of selected points for different speeds of the ES64U4 train 

Velocity [km/h]
Displacements [mm] Accelerations [m/s2]

UzP3 UzP7 UzP11 UzL3 UzL7 UzL11 PzP7D PzP7G PzL7D PzL7G

static 15.27 9.15 15.21 15.27 9.17 15.21 – – – –

10 15.28 9.16 15.27 15.28 9.16 15.27 0.01 0.03 0.01 0.03

40 15.26 9.26 16.24 15.26 9.28 16.3 0.08 0.15 0.07 0.15

80 15.36 9.31 16.17 15.34 9.25 16.22 0.06 0.06 0.06 0.07

120 16.14 9.38 17.31 16.14 9.42 17.34 0.15 0.13 0.17 0.14

160 17.41 9.70 19.92 17.39 9.56 20.07 0.28 0.28 0.25 0.26

180 21.00 9.60 25.30 20.86 9.78 25.47 0.26 0.27 0.27 0.31

200 19.89 10.00 21.19 19.87 9.96 21.44 0.32 0.33 0.33 0.35

dynamic coefficient 1.38 1.09 1.66 1.37 1.09 1.67 – – – –

Table 4. Displacements and accelerations of selected points for different speeds of the ETR610 Pendolino train 

Velocity [km/h]
Displacements [mm] Accelerations [m/s2]

UzP3 UzP7 UzP11 UzL3 UzL7 UzL11 PzP7D PzP7G PzL7D PzL7G

static 10.51 5.95 10.51 10.51 5.95 10.51 – – – –

10 10.51 5.95 10.51 10.5 5.95 10.51 0.01 0.06 0.02 0.05

200 11.15 6.92 11.61 11.18 7.02 11.73 0.48 0.53 0.5 0.55

230 10.29 7.18 10.20 10.28 7.17 10.21 0.54 0.6 0.52 0.6

250 11.21 10.15 10.83 11.18 10.12 10.87 1.49 1.54 1.5 1.54

dynamic coefficient 1.07 1.71 1.10 1.06 1.70 1.12 – – – –
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Fig. 9. Dynamic runs of the vertical displacement of the UzP7 
point at the speed of 10 and 200 km/h for the ES64U4 train

Fig. 10. Dynamic runs of the vertical displacement of the UzP11 
point at the speed of 10 and 200 km/h for the ES64U4 train

Fig. 11. Dynamic runs of the vertical acceleration of the PzP7G 
point at speeds of 10 and 200 km/h for the ES64U4 train

Fig. 12. Dynamic runs of the vertical acceleration of the PzP7D 
point at speeds of 10 and 200 km/h for the ES64U4 train

Analyzing the displacement diagrams for the 
ES64U4 train (Figs. 8-10), it can be seen that the 

impact of dynamic load for the extreme points (UzP3, 
UzP11) is much greater than for the middle point 
(UzP7). After removing the load from the bridge, 
the extreme points perform free damped vibrations, 
for the middle point they are more c omplex. The 
acceleration diagrams of the upper and lower ends of 
the PzP7 hanger (Figs. 11, 12) have a similar shape 
and similar values. However, their nature is slightly 
different. In the upper belt there are definitely larger 
oscillations. This is related to the lower stiffness of 
the arch girder in relation to the stiffness of the deck.

Fig. 13. Dynamic runs of the vertical displacement of the 
UzP3 point at speeds of 10, 200 and 250 km/h for the ETR610 
Pendolino train 

Fig. 14. Dynamic runs of the vertical displacement of the 
UzP7 point at speeds of 10, 200 and 250 km/h for the ETR610 
Pendolino train 

Fig. 15. Dynamic runs of the vertical displacement of the 
UzP11 point at speeds of 10, 200 and 250 km/h for the 
ETR610 Pendolino train 
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Fig. 16. Dynamic runs of vertical acceleration of the PzP7G 
point at speeds of 10, 200 and 250 km/h for the ETR610 
Pendolino train 

Fig. 17. Dynamic runs of vertical acceleration of the PzP7D 
point at speeds of 10, 200 and 250 km/h for the ETR610 
Pendolino train 

When traveling with the Pendolino train (Figs. 13-15),  
the displacements for the analyzed points are 
comparable to those of the ES64U4 train, except 
for the midpoint for the speed of 250 km/h, where 
we can observe much greater dynamic effects. For 
the Pendolino load for speeds of 10 and 200 km/h, 
the acceleration values (Figs. 16, 17) are similar to 
those for the ES64U4 train. A significant increase 
occurs at a speed of 250 km/h. However, the obtained 
acceleration values are acceptable both in terms of 
travel safety and travel comfort.

Comparing the ES64U4 and Pendolino trains, we 
can observe slightly different dynamic effects in the 
structure. This is related to the geometry of the bridge 
and the distribution of loading forces. In the case of 
the Pendolino train, the values of the forces are the 
same, in the ES64U4 train, the locomotive forces are 
about 1.74 times greater than those of the wagons. 
This results in greater changes in deflections, and 
consequently also vibrations, when the locomotive 
approaches or exits the structure. The obtained values 
of dynamic coefficients for individual measurement 
points (Tables 2 and 3) are characterized by high 

variability, they range from 1.06 to 1.71. There is no 
proportional relationship between their value and the 
load speed. Even for the same measurement point (e.g. 
UzP7) for crossings of different types of trains, the 
dynamic coefficient reaches the values of 1.09 or 1.71.

4. CONCLUSIONS
Railway infrastructure facilities are highly exposed 

to dynamic factors. With the development of computer 
tools, numerical simulations of such structures have 
become possible. Modal analysis is one of the simplest 
to perform, here it was carried out in the Autodesk Robot 
program for various variants of the mass distribution. In 
the case of the considered object, it was more convenient 
to use a discrete distribution, thus avoiding the inclusion 
of frequencies associated with local vibrations of 
individual elements, and not the structure as a whole. 
For both mass models, the basic vibration frequencies 
were similar. In the case of this type of objects, however, 
it can be difficult to assess the vibration mode shapes as 
it is not always possible to clearly determine whether it 
is a pure bending or torsional or other mode. The modes 
are usually clear only for the first couple of frequencies. 
In the case of the analyzed structure, the first natural 
frequency in an out-of-plane bending mode was equal 
to 1.1 Hz, and that of in-plane bending vibrations was 
2.12 Hz. The first torsional mode was found at 2.44 Hz. 
Operational tests were carried out for this structure 
by the Road and Bridge Research Institute in Kielce. 
The results obtained were similar, which proves the 
correctness of the built model [29].

According to the PN-EN standards [30-35], the 
knowledge of the first frequencies of bending and 
torsional vibrations enables the decision to perform 
a dynamic analysis. This analysis was made using 
the MES3D program for two trainsets. The values 
of displacements and accelerations for the adopted 
measurement points were examined. The obtained 
maximum values of vertical accelerations do not 
exceed the value of 1.6 m/s2, so they are within the 
range allowed by the standard, both in terms of travel 
comfort and traffic safety.

When designing the superstructure, we often use 
the standard dynamic coefficient. However, it has 
a global character and is not directly related to the 
velocity of the load nor does it always correctly reflect 
the behavior of individual parts of the structure. The 
values of dynamic coefficients obtained here for some 
measurement points are relatively high. Nonetheless, 
these coefficients are local and do not suggest a threat 
to the safe operation of the structure.
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