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A b s t r a c t
In research, there is a growing interest in using artificial intelligence to find solutions to difficult scientific problems. In this 
paper, a deep learning algorithm has been applied using images of samples of materials used for road surfaces. The photographs 
showed cross-sections of random samples taken with a CT scanner. Historical samples were used for the analysis, located in 
a database collecting information over many years. The deep learning analysis was performed using some elements of the 
VGG16 network architecture and implemented using the R language. The learning and training data were augmented and 
cross-validated. This resulted in the high level of 96.4% quality identification of the sample type and its selected structural 
features. The photographs in the identification set were correctly identified in terms of structure, mix type and grain size. The 
trained model identified samples in the domain of the dataset used for training in a very good way. As a result, in the future such 
a methodology may facilitate the identification of the type of mixture, its basic properties and defects.
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S t r e s z c z e n i e
W badaniach naukowych obserwuje się coraz większe zainteresowanie wykorzystaniem sztucznej inteligencji do poszuki-
wania rozwiązań trudnych problemów naukowych. W niniejszym artykule został zastosowany algorytm głębokiego uczenia 
z użyciem obrazów próbek materiałów wykorzystywanych do budowy nawierzchni drogowych. Fotografie przedstawiały 
przekroje losowych próbek wykonane za pomocą tomografu komputerowego. Do analizy wykorzystano próbki historyczne, 
znajdujące się w bazie danych zbierającej informacje z wielu lat. Analizę głębokiego uczenia wykonano przy użyciu niektó-
rych elementów architektury sieci VGG16 i zaimplementowano, stosując język R. Dane uczące oraz treningowe poddano 
augmentacji oraz walidacji krzyżowej. W rezultacie uzyskano wysoki poziom 96,4% jakości identyfikacji rodzaju próbki 
oraz jej wybranych cech strukturalnych. Fotografie w zbiorze identyfikacyjnym zostały poprawnie zidentyfikowane pod 
względem struktury, typu mieszanki oraz uziarnienia. Wytrenowany model w bardzo dobry sposób zidentyfikował próbki 
w obszarze dziedziny trenowanego zbioru danych. W rezultacie taka metodyka może w przyszłości ułatwić identyfikację 
rodzaju mieszanki, jej podstawowych właściwości oraz defektów.

Słowa kluczowe: głębokie uczenie, tomograf, język programowania R, klasyfikacja, nawierzchnie drogowe, korelacja, 
obraz cyfrowy
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1. INTRODUCTION
Mineral-asphalt composites are used in the design of 

new road surface structures, but so are other cement-
bonded materials [1]. Among these, recycled materials 
using both asphalt binder and cement have their well-
deserved place [2]. These are materials used in deep 
recycling technology. Each of these materials has  
a different structure. It is mainly due to the presence 
of different aggregates as well as the way the mastic 
or mortar phase is shaped. Deep recycling technology 
is definitely dominated by recycled aggregate (RAP) 
[3]. In contrast, mineral and asphalt mixtures (mma) 
are dominated by crushed aggregate, with a crushing 
coefficient of C90/3, which is required primarily to ensure 
that the mma has an adequate internal friction coefficient. 
In contrast, cement-bound mixtures for substructures 
as well as soil-cement stabilisations have a structure 
similar to cement concrete [4] taking into account the 
macrostructure of the pavement layers, which are made 
of heterogeneous materials. The interaction between the 
joined layers was determined by applying a cohesion 
contact model. The parameters of the model were 
identified using the results obtained in the course of the 
actual Leutner tests. The heterogeneity of the structure 
was mapped based on a digital image of a tomographic 
cross-section. The separation of the materials included 
in the individual layers was performed with the use of  
a script in the MatLab program. Thanks to this, the batch 
file for the Abaqus program was prepared thoroughly. 
As a result, it was possible to map as closely as possible 
the profile of the deformation caused by the loss of the 
interlayer adhesion. Based on the data analysis, it was 
found that in the layer of the base course constructed 
from cold-applied recycled materials, the loss of 
interlayer adhesion is related to the state of non-linear 
mastic deformation. As a consequence, it was found 
that large deformations in the mastic structure would 
cause losses of aggregate grains in the recycled 
layer. In addition, a large horizontal displacement 
within the layer of the base course made of recycled 
material is one of the likely causes of edge fractures 
in the road structure.”,”container-title”:”Structure and 
Environment”,”DOI”:”10.30540/sae-2021-011”,”ISS
N”:”20811500”,”issue”:”4”,”journalAbbreviation”:”S
AE”,”source”:”DOI.org (Crossref. These differences 
suggest that it is possible to find relationships from 
which a preliminary diagnosis can be made in terms 
of material quality as well as potential defects in the 
structure. 

To some extent, this problem can be solved by 
using shallow machine learning techniques. Such 

data mining techniques (Data Mining) are so far 
applied, but they are mainly used to correctly 
predict the mechanical or physical properties of road 
materials. The undoubted advantage of Data Mining 
methods is the inclusion of both qualitative and 
quantitative variables. In their paper, Rebelo et al. 
[5] used a number of DM techniques to effectively 
predict the water resistance of mineral-asphalt 
mixtures. Whereas in the paper [6] the authors have 
used DM to improve road surface rutting resistance. 
In their work, Guo and Hao [7] used a random forest 
algorithm to assess road surface durability using 
information on emerging damage. The estimation of 
the stiffness modulus was successfully determined 
using Falling Weight Deflectometer (FWD) and 
with the aid of an artificial neural network (ANN) 
or support vector machines (SVM) [8, 9]. DM 
techniques have also excelled in predicting IRI 
[10] however, limit the implementation of ML by 
practitioners and transportation agencies. One of 
these challenges is related to the high variability 
in the performance of ML models as reported 
by different studies and the lack of quantitative 
evidence supporting the true effectiveness of these 
techniques. The objective of this paper is twofold: 
to assess the overall performance of traditional and 
ML techniques used to predict pavement condition, 
and to provide guidance on the optimal architecture 
and minimum sample size required to develop these 
models. This paper analyzes three ML algorithms 
commonly used to predict International Roughness 
Index (IRI) or skid resistance [11].

However, the best technique to solve this complex 
problem that is beyond the perception of the observer’s 
senses is deep learning using convolutional networks. 
At the present time, this type of analysis is being 
successfully used especially in medical diagnostics 
[12]. Nevertheless, it also finds use in civil engineering. 
The road industry has recently seen the emergence of 
preliminary analyses using deep learning to identify 
the condition of road surfaces. This approach makes 
it easy to identify damage and perform a quick 
classification of road surface condition “on the fly” 
by analysing images taken with a smartphone [13]. 
It can also support the identification of particularly 
damaged sections of road surface [14]. However, it 
should be made clear that it is difficult to find attempts 
in the literature to use a deep learning (DL) algorithm 
to recognise the structure of road materials from 
tomograph-derived images. The level of abstraction 
of the input data suggests that other methods will not 
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be effective for the intended purpose. The search for 
similarities through image decomposition requires 
the consideration of several million indeterminates, 
which clearly disqualifies an analytical approach 
using, for example: logistic regression or DM. An 
additional advantage of using DL is that it not only 
looks for similarities in the contours of objects, but 
also for changes in their colour.

The aim of the research and analysis performed was 
to determine the scale of the feasibility of implementing 
DL to identify the structure of selected road materials. 
The paper also considers the possibility of looking for 
correlative relationships between the identified objects 
and selected physical characteristics of road composites. 
This article should be regarded as a feasibility study of 
the implementation of a current state-of-the-art learning 
technique for road applications.

2. MATERIALS AND METHODS
2.1. Deep learning

As already mentioned, a technique frequently used 
for classification and regression tasks is the shallow 
learning technique. With its help, a number of 
scientific problems can be solved. However, in order 
to do this, steps must be taken to process the features, 
i.e. to create appropriate layers of data representation. 
In deep machine learning, this step is automated. 
This facilitates the entire workflow and is therefore 
most suitable for processing complex objects such as 
digital images. 

Deep learning involves the application of multiple 
successive layers of representation. This is a technique 
that works very well when working on perceptual 
tasks. In the case of shallow learning, the addition of 
subsequent steps leads to less and less improvement in 
the results obtained [17]. This is because the optimal 
first layer of the representation is not the optimal 
layer of the multilayer model. In deep learning, it is 
possible to combine all layers of data representation. 
In other words: modifying one internal feature of the 
model results in automatic adaptation of the entire 
model without the need for user intervention. This 
change is controlled by a single feedback signal. For 
shallow machine learning models, it is not possible 
to correctly describe multiple relationships in objects 
with a high level of abstract representation without 
the need to add subsequent intermediate layers 
(independent of each other).

At the present time, deep learning involves the 
creation of dozens of successive representations 
learned from training data, compared to shallow 

learning which usually contains two layers of 
representations. Although deep learning was 
developed for classification tasks involving object-
image mapping using a deep sequence of simple 
transformations, the DL technique can be used 
successfully for regression tasks. The issue that needs 
to be changed is a different algorithm for tuning the 
weights, i.e. the optimiser, and a different form of the 
objective function (loss function). A loss function is 
nothing more than the distance between the predicted 
value and the actual value. In the case of an image, 
it denotes the accuracy of the image processing by 
the network. Far more important is the selection of 
the optimiser, i.e. the backpropagation algorithm. It 
is directly responsible for the efficiency in tuning the 
weights of the transformation function which directly 
translates into the efficiency of the representation of 
the output results. As a result, the operation of the 
deep learning algorithm can be represented by the 
nomogram in Figure 1.

Fig. 1. Convolution network diagram

A network with minimal loss can be considered 
trained, which translates into a high representation 
of the test object. In essence, DL can be thought of 
as a multi-stage operation of “distilling” information 
passing through successive “filters”, producing 
increasingly clear and homogeneous results. The key 
to achieving high efficiency is proper management of 
the weights (Fig. 1). The weights are a set of numbers 
that allow the data transformation to be performed in 
such a way that the process of mapping predicted data 
sets to experimental ones is as accurate as possible. 
Therefore, in deep learning, a network can contain 
millions of parameters. A key element that has made 
DL techniques more affordable is the availability of 
efficient optimisers and the calculational capacity of 
numerical machines. The calculation time involved 
in fine-tuning the weights is fast and the efficiency 
is far better than traditional methods such as logistic 
regression.
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2.2. Convolutional network architecture
This paper uses elements of the VGG16 convolutional 

network architecture trained on the ImageNet set 
[18]. The ImageNet set included 1.4 million images 
divided into 1,000 classes. The present network was 
trained on a very general set and had a correctness 
of object identification of >96%. Thus, the learned 
spatial hierarchy of features can effectively form the 
basis for identifying the structure of road materials 
assigned to classes not included in the ImageNet set. 
The ability to transfer the “knowledge” contained in 
pre-trained networks to other sets is a huge advantage 
over shallow learning methods. The VGG16 network 
was used for the analysis using the technique of 
extraction of features of interest. These features are 
then processed by a new classifier, which in this paper 
will be subjected to a process of training from scratch. 
This network will consist of pooling and convolution 
layers. The final stage is the densely connected 
classifier mentioned earlier. Indeed, the convolutional 
part of the network consists of the overall rule and 
image recognition concepts. The convolutional part 
can be shared, while the dense classifier is directly 
related to the specifics of the object, in this case  
a photograph taken via a road material tomograph. 

Given the above assumptions, the concept and 
architecture of a trained convolutional network will 
be used, applying a feature extraction technique in the 
process. A new final classifier will then be trained from 
scratch. The use of the VGG16 trained convolutional 
network will allow the use of generalisations in 
image interpretation that have proven successful for 
identifying ImageNet set objects. The abbreviated 
architecture of the VGG16 network is given below 
(Table 1).

Table 1. Abbreviated form of the convolutional architecture 
of the VGG16 network

Layer (type) Output Shape Param#

Input_1 (InputLayer) (None, 150,150,3) 0

block1_conv1 (Conv2D) (None, 150,150,64) 1792

block1_conv2 (Conv2D) (None, 150,150,64) 36928

block1_pool (MaxPooling2D) (None, 75,75,64) 0

(…)

block5_conv1 (Conv2D) (None, 9,9,512) 2359808

block5_conv2 (Conv2D) (None, 9,9,512) 2359808

block5_conv5 (Conv2D) (None, 9,9,512) 2359808

Block5_pool (MaxPooling2D) (None, 4,4,512) 0

Total params: 14,714,688
Trainable params: 14,714,688

The final feature map of the VGG16 network to be 
used for further analysis was (4,4,512). The next step 
was to extend the model, as previously conceived, 
to include dense classifier layers. The downside of 
this procedure is the long costly calculation time, 
which depends on the performance of the processor. 
On the other hand, an indisputable advantage of this 
technique is the use of “data augmentation”, which 
is essential when there is a small input data set. The 
problem presented in this paper was solved using  
a sequential model, linking successive network layers. 
The final network model was as follows (Table 2).

Table 2. Abbreviated form of the convolutional architecture 
of the VGG16 network

Layer (type) Output Shape Param#

VGG 16 (previous model) (None, 4, 4, 512) 1,471,4688

Flatten_1 (Flatten) (None, 8192) 0

dense_3 (Dense) (None, 256) 2,097,408

dense_4 (Dense) (None, 1) 257

Total params: 16,812,353
Trainable params: 16,812,353

The added dense classifier required to obtain  
a measurable value for the class similarity scale 
of a given photograph introduced an additional 2 
million parameters over the baseline VGG16, so the 
final model included a total of more than 16 million 
parameters. Therefore, the process of training the 
network had two-stages. Initially, it was necessary 
to freeze the VGG16 network for the duration of 
the dense classifier training. In the next stage, part 
of the VGG16 network blocks were unfrozen. This 
will provide greater control over the changes in the 
“knowledge” that the VGG16 convolution network 
brings.

2.3. Examination by means of computed tomography 
Computed tomography is a non-destructive 

technique used to analyse the internal structure of 
materials based on the properties of X-rays. One of 
these properties is the ability to travel through matter, 
losing energy on the way according to Beer’s law. 
The incidence of linear attenuation μ depends on the 
density of the material under examination at each 
point through which the beam passes. The creation 
of a tomographic image is based on measuring the 
absorption of radiation by an object. Performing  
a scan in a CT scanner is based on directing a beam 
of X-rays at an object and then recording its intensity 
through a detector on the other side of the object. 
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The study uses a composite of object projections 
taken from different directions to generate two-
dimensional (2D) cross-sectional images and then 
three-dimensional (3D) models. The scanned object 
is divided into small cells, called voxels (volumetric 
element, equivalent to a pixel for a 2D image), for 
which the linear absorption coefficient is the same. 
A the tomograph operating diagram is shown in the 
figure below (Fig. 2).

Fig. 2. Tomograph operating diagram [19]

Scanning is performed by exposing the object to 
X-rays while rotating the sample 360° relative to  
a stationary tube and detector. The accuracy of the final 
representation depends on the number of projections 
made during the object’s rotation. By having 
projection images for multiple cross-sections of the 
object, the image of the entire sample is reconstructed 
using the Radon transform. The practical result is  
a three-dimensional greyscale image in which each 
shade of grey corresponds to a specific density value. 
Lighter tones represent higher densities, while darker 
tones denote lower density materials. 

The study was performed on a Nikon XT H 225 ST CT 
scanner. A rotating lamp generating a beam of radiation 
with a maximum voltage of 225 kV and a power of 450 W 
was used. When performing the scans, the voltage and 
intensity values used were selected experimentally, by 
scanning the sample several times, to ensure the best 
possible parameters for the type of material. From 
the combination of almost 4,500 images, a 3D model 
of the object with a resolution of at least 84 µm was 
created. This was achieved by reconstructing the data 
and pre-processing it, determining the axis of rotation, 
reducing noise, sharpening edges and applying filters 
in CT Pro 3D. 

2.4. Research sample
The set of photographs of the various materials 

used for incorporation into the road structure 

included 260 photographs. All photographs were 
divided into 14 classes. Each class represented one 
object with characteristics that differed from each 
other. The following types of road materials found in 
the archival research database constituted the set of 
selected objects (Table 3).

Table 3. Identification and description of object classes
No. Class Description

1. CC(G)
Cement concrete 0/16 containing, among other 

things, granite aggregate

2. AC11(Ga)
0/11 asphalt concrete containing, among other 

things, gabbro aggregate

3. WMS_I
0/16 asphaltic concrete with a high stiffness 

modulus with limestone aggregate.

4. MCAS_I
Recycled mix of foamed asphalt with  

a fine-grained structure with the addition of road 
binder C5 [20]

5. AC16_PMB
Asphalt concrete 0/16 containing modified 

asphalt for the wearing course

6. AC22P
Asphalt concrete for sub-base with a maximum 

grain size of 22 mm

7. WMS_II
0/16 asphalt concrete with a high stiffness 

modulus

8. AC8S
Asphalt concrete with a grain size of 0/8  

for the wearing course

9. MCE
Cement & emulsion mixtures for incorporation 

into the sub-base layer in deep recycling  
technology

10. MMP
0/16 mm mineral-emulsion-polymer mix with 

dispersed powders

11. MCAS_II
Recycled mix with foamed asphalt containing 

limestone aggregate

12. CBGM_CEMI
A soil-cement mixture designed for a sub-base 

layer with a cement content of 4%

13. CBGM_CEMI_M
A soil-cement mixture containing metakaolin 
designed for an auxiliary sub-base layer with  

a cement content of 4%

14. CBGM_PK
A soil-cement mixture containing bark ash  

designed for an auxiliary sub-base layer with  
a cement content of 4%

The sample set was randomly divided into two 
subsets with the following percentages:

•	 learning – 70%,
•	 test – 30%.
In addition, an additional set of photographs with 

similar characteristics to the learning set was used for 
validation to confirm the validity and effectiveness of 
the DL technique used. A subset of the learning data 
was selected so that the number of data in the classes 
and their types were as equivalent as possible. 
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3. ANALYSIS OF RESEARCH RESULTS
3.1. Data set augmentation

The dataset used in the analysis is not large in 
number, so the learning effect was enhanced by 
using a data augmentation technique. It consists of 
randomly transforming a random image in such a way 
as to best eliminate certain peculiarities and its initial 
settings and thus enhance the level of generalisation 
of the trained convolutional network. This procedure 
dismisses the possibility of fine-tuning the scales 
using two of the same photographs, i.e. it prevents 
the network from “overlearning”. A code snippet with 
the configuration of the parameters used during data 
augmentation is shown below:
train_datagen_augmentation<- image_data_generator(
rescale=1/255,
rotation_range = 40,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = TRUE,
fill_mode = “nearest”).

In summary, data augmentation is not about creating 
new data. Its task is to use existing photographs 
submitted for further analysis by performing a random 
and one-off transformation in them.

3.2. Course of the learning process
The first stage of the convolutional network 

learning process started by freezing the weights of the 
VGG16 network. In this step, only the dense classifier 
weights were trained. Otherwise, the training process 
could introduce permanent changes to the underlying 
convolutional network VGG16, strong enough 
that the resulting network would generate incorrect 
results. The loss function should be selected according 
to the scale of the problem. Therefore, a categorical 
crossentropy function was used. It is an optimisation 
function that classifies data by predicting the 
probability of the data belonging to one of the defined 
classes. On the other hand, a softmax function was 
used as the last class activation function together with 
an RMSprop optimiser with a learning rate of 1·e-5. 
The final result was a vector of probability values for 
assigning a given object to all 14 classes in the range 
<0;1>. In the first stage, 200 epochs were used, taking 
a batch of 20 photographs at a time for analysis. The 
result of the trained network, through the use of  
a validation set, achieved a concordance expressed 

by a coefficient of determination of R2 = 92.9% with  
a value of the loss function of the learning set 
equalling 2.0086 and, respectively, of the test set 
equalling 2.0413. An increase in the value of the loss 
function on the test set suggested a slight overlearning 
of the network. Thus, further training of the dense 
classifier did not provide new quality (knowledge) 
in photograph identification. The results of the test 
photograph match probability are shown in Figure 3.

 

Fig. 3. Probability of an AC16W reference sample 
photograph belonging to a class of a trained 
convolutional network

Observing the results in Figure 3, it should be noted 
that the trained dense classifier and the frozen weights 
from the ImageNet set found the AC16W asphalt 
concrete mix similar to the MCAS_I mix (11%) 
or the MCE mix (10%). This is an unsatisfactory 
and erroneous result and further fine-tuning of the 
convolution network is required. This is because 
originally the scales in the VGG16 network architecture 
were used to identify objects other than road materials.

Therefore, a second phase related to the fine-
tuning of the convolutional network was realised. As  
a result, the layers of the convolutional network were 
unfrozen starting from level 3 of the network shown 
in Table 1. Training took place, introducing another 
100 epochs. This value has been set so as not to cause 
overtraining of the network. Once the training process 
was complete, the tuned model was validated by 
assessment of its effectiveness, using a validation set of 
the same model used in the first step. The effectiveness 
of the model, as expressed by the R2 coefficient for the 
model, was 96.4%. This result should be regarded as 
very good. Such efficiency should be linked directly 
to the unfreezing of the network layers responsible 
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for recognising high-level detail. The improvement 
in the quality of the trained network increased from  
R2 = 92.9% (stage 1) to R2 = 96.4% (stage 2). 
Nevertheless, a tendency of the network to learn “by 
heart” was observed in the second phase of network 
training. This phenomenon is shown in Figure 4. 

Fig. 4. Graph of the change in the loss function for the 
learning (loss) and test set data (val_loss)

A negligible increase in error on the test set was 
observed from epoch 70 onwards, while error 
stabilisation was observed for the learning set. In 
order not to cause excessive network overlearning, 
the number of 100 epochs should not be increased.

3.3. Validation of Results
Validation of the resulting model was subject to 

an assessment of the ability to identify objects (road 
materials) that had not been involved in previous 
model evaluations. Additional validation objects 
included photographs of the AC16W mix. The result 
of the AC16W classification against the defined 
classes is shown below (Fig. 5).

Fig. 5. Probability of the photograph of the AC16W reference 
samples belonging to the class of trained convolutional 
networks after stage two (unfreezing of selected layers)

The results of the classification by means of the 
trained convolutional network, shown in Figure 4, 
indicate that the greatest similarity of AC16W can 
be attributed to the WMS_I and WMS_II mix type 
class. This is definitely a big difference from the 
phase 1 results (Fig. 3). This time, the algorithm 
correctly indicated that the analysed samples have 
a concrete-type closed structure. The DL algorithm 
firmly disqualified recycled mixtures (MCAS/MCE) 
and CBGM. To give an idea of the possibility of 
comparison, photographs of the two mma most 
similar to the AC16W are juxtaposed in Figure 6.

a)   

b)   

Similarity = 27.7%
c)   

Similarity = 55.6%

Fig. 6. Juxtaposition of the two samples with the highest 
similarity to the reference sample: a) reference sample 
AC16W, b) WMS_I, c) WMS_II

Probably the rules of similarity established by the 
convolution network resulted from the nature of the 
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mastic structure produced, the type of aggregate (grey 
shade) and the pore content. In addition, the grain 
size, i.e. the dimension of the maximum grain, can 
also be expected to have made a difference. In the 
cases analysed (Fig. 6) the grain size curve was 0/16. 
It turned out that the convolutional network can, with  
a small set, correctly classify objects with significantly 
different embedding technology. CBGM and recycled 
MCE/MCAS mixes are used for the substructure. On 
the other hand, type WMS or classic AC with concrete 
structure are used for the upper structural layers. In 
view of the facts cited, a measurable probability value 
can be linked to physical characteristics in the future, 
e.g.: water resistance of the mma. 

In the future, it is planned to superimpose heat 
maps [21], which will allow the key area of the 
convolutional network to be highlighted, from which 
it can be determined what caused the sample to be 
classified in this way. Thus, it will be possible to 
identify areas in the structure of the material used in 
road construction which should be analysed in detail, 

focusing on the reasons for a particular regularity in 
its structure.

4. CONCLUSIONS
Based on the research and analysis performed, the 

following conclusions were formulated:
•	 the use of convolutional network algorithms is an 

excellent tool for classifying abstract objects of  
a perceptual nature;

•	 the use of modifications to the available architecture 
of other convolutional networks allowed the correct 
identification of the composite in terms of grain 
size, type, manufacturing technology and structure;

•	 the use of data augmentation and the unfreezing 
of the deep layers of the convolutional network 
dramatically increased the ability to identify objects 
from R2 = 92.9% to R2 = 96.4%;

•	 based on the set of photographs, the network, with 
a level of concordance of R2 > 96%, correctly 
classified the AC16W as regards structure, mix 
type, grain size and colour of the aggregate.
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