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STIFFNESS OPERATOR FOR BOUNDARY PROBLEMS
OF STRUCTURAL ANALYSIS
AND SEVERAL NEW VARIATIONAL FORMULATIONS

Abstract

So-called “stiffness operator” for boundary problems of structural analysis is introduced in the distinctive paper. There is
a direct analogy between this stiffness operator and corresponding stiffness matrix of the considering structure in terms of
finite element method. Namely we can consider stiffness operator as a limiting (continual) generalization of stiffness matrix.
The explicit formulation of stiffness operator is presented. Several new variational formulations are discussed as well.
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1. Introduction

The finite element method [2, 7] (FEM) has
proven to be a versatile method for the simulation
of continuous physical systems in many problems
of structural analysis. FEM requires a discretization
(a mesh) of a domain. This discretization, along
with FE formulations, is used to assemble a set of
simultaneous equations

Ki=f (1.1)

which, when solved, provide an approximate solution
of the system under consideration. Here K is a stiffness

matrix; S is a residual vector; u is a vector of global
unknowns.

There is analogue of stiffness matrix in the continual
case. We propose that corresponding operator should
be called stiffness operator [11, 12, 16]. Direct
formulation of this stiffness operator is presented in
the distinctive paper.

2.Formulation of a problem for elliptic set of second-
order differential equations

Boundary problems for elliptic set of differential
equations corresponds to various problems of

structural mechanics [8-17]. For instance in elastic
theory in arbitrary coordinates. Therefore it is
expedient to develop general statements for elliptic set
of differential equations. And, thereafter, to directly
derive specific formulations for basic problems of
elastic theory and heat conduction (or, to be more
exact, for their basic elliptic members).

The differential self-conjugated operator for
elliptic set of M second-order equations in a space of
N-dimensional functions has the form

N N .
L=)>0/4,0u (2.1)
i=1 j=1
where
11 1,2 LM
iy i ij
2,1 2,2 2.M
a a:’:
4,= " ! Y= 45 g (2.2)
M1 M2 MM
al ; aivj ai’j
— T
u=[u u, uy ] (2.3)

We imply here that AiJ = A;i ; symbol * is conjugation
notation. ‘
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The formulation (2.1) can be apparently rewritten

in matrix form:
L=D"4D (2.4)
where

We use the following notation:

al
V=|: |=grad
aN

is the gradient;
V=-0,

is the divergence;

E is the identity matrix of the M-th order; ® is the
sign of direct product of matrices i.e.

. Oy ]1=—div

0,E,,
D= 62:15M (2.6)
6N.EM
D =-{0,E, 0,E, ... 0,E,1 (2.7

Al’1 A1,2 ... ALM
A2,1 A2,2 ... AZ,M

A= .. = {Ap,q }p,q=1,---,M (2.8)
AM,I AM,2 AM,M

Let us derive basic formulas for operator of
boundary problem. Operating on product 6 (where
U is an arbitrary function; € is the characteristic
function of domain Q) we get

LOu =D ADOu = D" A[0Du+(D0)u] =
=D0ADu+D A(D'O)u =
=0D"ADu+(D0)ADu+D"A(D0)u,

2.9)

where D@ are derivatives of @;

DO=5;v, DO=-6,v, v,=v®E, (2.10)

T
vy ]

vector on the domain boundary 0Q ;

v=[v, v, .. is the unit normal direction

VIE'M
v, =| VaEu .11
VyEy
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v, =-{v,E,, V,E, ... vyE,] (2.12)

0, =0(p) is the delta function of domain boundary
0Q;

S5, =00/0v (2.13)

p(x) =0 is the equation of domain boundary 6Q [8-17].

Let / is the operator defining natural conditions at

the domain boundary 0Q

N N
I=-v,AD = —ZZviAwaj

(2.14)
i=1 j=1
Corresponding adjoint operator has the form
. N N
[==D"Av, =Y >0,4v, (215
i=l j=1
Let us also introduce self-adjoint operator
L, =D04D (2.16)

It is the operator of the second (main) boundary
problem.
Using (2.10)-(2.16), we get

Lyu=0Lu +06 ;lu (2.17)
LOu=Lu—1"3,u) (2.18)
LOu=0Lu+38 lu—1"(3 u) (2.19)

Formulas (2.17)-(2.19) are basic relations of
presenting the operational method. Operators of
boundary problems with matched characteristics of
boundary conditions can be derived directly from
(2.17)-(2.19) [17].

In the distinctive case derivation carries an analogy
with derivation of boundary integral equations from
the second Green’s formula. Namely we partially
replace components with functions, which are known
from the formulation of boundary problem. The rest
of components are transposed from the right-hand to
the left-hand side, which can be rewritten in a various
forms with the use of (2.17)-(2.18) [17].

Within a domain (x € Q) we have the following
equation:
Lu=F

Therefore we can replace component 6Lu with 6F.
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Let us get operational formulations
Lu=F
for basic boundary conditions with the use of this
approach.

The second boundary problem.
(lu=f, xel =0Q)

Operational formulations have the form

LOu+I'8,u=F (2.20)
or Lyu=F or OLu+8.lu=F (221)
ie. L=10+1'8, =L,=0L+5 ] (2.22)
where
F=0F+8,.f (2.23)
The first boundary problem.
(u=g, xel =0Q)
Operational formulations have the form
Lou -8 lu=F (2.24)
Lou—@ du+1",u)=F (2.25)
OLu—1"@3,u)=F (2.26)
where
F=0F-1(3,g) (2.27)
Thus
L=10-5,1= (2.28)

=L,~8,1-1'8, =0L-1'5,

Self-conjugacy of the operator of the first boundary
problem is apparent from the last formulation.
Nevertheless this formulation is inconvenient for
numerical applications and corresponding operator of
Dirichlet’s problem is not positive define [17].

The third boundary problem.

(lu+h(u—g)=>b, xel =0Q)

Using boundary conditions we can write

Oplu=—38,hu+38,(b+hg) (2.29)
Operational formulations have the form
LOu+1"6,u+6, hu=F (2.30)

Lyu+8hu=F (2.31)
OLu+8,lu+8,.hu=F (2.32)

where
F=0F +8 .(b+hg) (2.33)
L=L0+["8, +5,h= (2.34)

=L, +8,h=0L—8,1+3h

We must just note that operator of the considering
problem is the operator if the second boundary
problem with diagonal component.

The third boundary problem is vital for practice
due to direct description of physical processes at the
domain boundary (Winkler foundation in the problem
of elastic theory or heat exchange in the problem of
heat conduction, for instance) and simulation of basic
boundary conditions. We have natural boundary
conditions if # =0 and main boundary conditions if
h=1.Incase of A=1 fixing conditions are simulated by
supports of great stiffness. This approach corresponds
to so-called penalty method and it is especially
convenient for numerical and computer realization.
Thus, the third boundary problem is the most universal
and preferable for applications [11, 12].

The mixed boundary problem.

lu=f, xel,
u=g, xel|’

[ul, =T =00
In the case of mixed boundary problem we have
various boundary conditions at different parts of the
domain boundary and finally obtain combination of
equations, which have already been formulated above.
Let ¥ be characteristic function of the part of
domain boundary with natural boundary conditions

and let ¥ be its corresponding complement,

W= al=Is o x+x=1 @239

Using (2.19) we get

LOO=0Lu+ 5, f + 0 Iu—
_l*;?érgx —;{)@fu-r o
Therefore we have

LOO— 76 u+1" y6,u=F (2.37)
Lyu=73 u~Igou=F  (2.38)
OLu+ 70, lu—1"30,u=F (239
L=L0-%3,1+1"y3, = (2.40)

=OL+%8 -1 %8, =L, — 8,1~ %5,

1
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Each of presenting operational formulations
of boundary problems is the united expression,
including condition within the domain and boundary
conditions. These formulations also provide matched
weight factors and they can be considered at arbitrary
embordering domain. It is especially significant
for numerical realization. In this connection we
recommend application of so-called method of
extended domain. In terms of the distinctive method
all problems are considered at extended domain
of arbitrary shape, particularly elementary (for
instance, parallel-piped, cylinder and others). This
leads to convenient mathematical formulas, effective
computational schemes and algorithms, simple data
processing and so on [8-17].

3. Symmetric formulation of a mixed boundary problem

In accordance with given boundary condition we get

OLu=0F; J,xlu=06,%f;
~I"8,qu=103,yg (3.1
If we combine equations (3.1) we obtain
OLu+3, ylu—1"8 yu=
=OF +8,.f+18,7%g (3.2)
Using (2.17)-(2.19) we have
OLu =Lu—3,lu
and consequently
Lou—8,lu+8ylu—1'8,7u=F (3.3)
Taking into account that
=0, lu+06, ylu=-98,ylu
we get
Lyu—38 . Flu—~1'8 u=F (3.4)
where F=0F+3 , f+13,%g (3.5)

Equation (3.4) can be rewritten in the following form

Lou—(+ 1 u=F (3.6)

or Lou—lu=F 3.7

12

where

I =81 (3.8)

lp=1+1; (3.9)

We propose to call operator L, —[, as stiffness
operator [11, 12] on the analogy of technics of finite
element method [2, 6].

The presenting operational formulation (3.7) of
mixed boundary problem is symmetric.

4. Variational formulation of a mixed boundary problem
On the basis of (3.6) we have

D(u) = % i (Lyu,u)dx — i (F,u)dx —

— [ e ydx + (4.1)

Iy

+ [ e [ (g, 7h)a.

5. Several examples of formulations

Three-dimensional problem of elasticity.
We have [17]

3

10
L,=).0,nd,| 0 1
00

J=1

—+

_ O O

o, 1o,
+| & pe,
| 9,0,
oo,
+| 0310,

N0,

0,10, 00,
0,10, 0510, |+
0,10, 3,10, |
o1h0, 0,10, |
ind, 40,
o0, 0,h0,

(5.1)

Here A, p are Lame coefficients; A, 4 are Lame
coefficients, defined at extended domain @ D Q)

(A =11 =0 outside Q),

h=0L; W=6p; 0,=0/dx (5.2)
Operators of the problem have form
Luzﬁﬁjouz—Fi, xe (5.3)
],:1
luzZVjal.’jz—fi, xel, 5.4)
=



STIFFNESS OPERATOR FOR BOUNDARY PROBLEMS OF STRUCTURAL ANALYSIS AND SEVERAL NEW VARIATIONAL FORMULATIONS Str UGt ure

Formulas for strain and stress components have
the form:
G, =0, e +2pg,;

(5.5)

& = % Ou+du); e=Yg, (56)

Where u —displacement components; &, ; is Chronicler’s
symbol.

One-dimensional problem of compression of column.
We have [15]

dOu=F, xe(0,a); ylu=yf, xel,;

T =7g. xel (5.7)

where

d=d/dx; d*=d*/dx*

Values of inside normal at points x =0 and x =a

are v=1 and v = —1 consequently.
Operators of the problem have form

l=vd; L,=dbd (5.8)
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