Zdzisława Owsiak

KOROZJA WEWNĘTRZNA BETONU

Kielce 2015
MONOGRAFIE, STUDIA, ROZPRAWY NR M66

Redaktor Naukowy serii
NAUKI TECHNICZNE – BUDOWNICTWO
prof. dr hab. inż. Wiesław TRĄMPCZYŃSKI

Recenzenci
prof. dr hab. inż. Wiesław KURDOWSKI
prof. dr hab. inż. Wiesława NOCUŃ-WCZELIK

Redakcja
Irena PRZEORSKA-IMIOŁEK

Projekt okładki
Tadeusz UBERMAN

© Copyright by Politechnika Świętokrzyska, Kielce 2015

Wszelkie prawa zastrzeżone. Żadna część tej pracy nie może być powielana czy rozpowszechniana w jakiejkolwiek formie, w jakikolwiek sposób: elektroniczny bądź mechaniczny, włącznie z fotokopiowaniem, nagrywaniem na taśmy lub przy użyciu innych systemów, bez pisemnej zgody wydawcy.

PL ISSN 1897-2691

Wydawnictwo Politechniki Świętokrzyskiej
25-314 Kielce, al. Tysiąclecia Państwa Polskiego 7
tel./fax 41 34 24 581
e-mail: wydawca@tu.kielce.pl
www.wydawnictwo.tu.kielce.pl
Spis treści

Przedmowa ................................................................................. 7

1. Reakcja wodorotlenków sodu i potasu z krzemionką .................. 9
   1.1. Mechanizm reakcji .......................................................... 9
   1.2. Mechanizm ekspansji ...................................................... 19
   1.3. Rola wodorotlenku wapnia .......................................... 26
   Literatura ............................................................................. 38

2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką .... 43
   2.1. Rodzaje kruszyw .......................................................... 44
      2.1.1. Kruszywo krzemionkowe ......................................... 44
      2.1.2. Kruszywo poliminerale ............................................ 57
   2.2. Składniki betonu wprowadzające sól i potas ....................... 62
      2.2.1. Alkalia z cementu ................................................... 62
      2.2.2. Zawartość alkaliów w betonie ................................. 65
      2.2.3. Sód i potas wprowadzone do betonu z dodatkami mineralnymi i domieszkami chemicznymi ................................. 69
      2.2.4. Jony sodu i potasu pochodzące z kruszywa ................. 73
   2.3. Skład roztworu w porach betonu .................................... 78
      2.3.1. Rola wody w betonie ............................................... 78
      2.3.2. Skład roztworu w porach zaczynu ........................... 81
      2.3.3. Skład roztworu w porach zaprawy i betonu ............. 83
      2.3.4. Wpływ zawartości wody na skład fazy ciekłej ............ 85
      2.3.5. Wpływ reakcji alkaliów z krzemionką na skład fazy ciekłej ...... 88
      2.3.6. Wpływ składu roztworu na ekspansję zaprawy .......... 93
   Literatura ............................................................................. 97

3. Reakcja alkaliów z węglanami ................................................. 104
   3.1. Rodzaje reaktywnych kruszyw węglanowych ...................... 104
   3.2. Reakcja wodorotlenków sodu i potasu z węglanami .......... 107
   3.3. Mechanizm ekspansji w następstwie reakcji alkaliów z węglanami ...... 107
   3.4. Czynniki zwiększające ekspansję .................................... 109
   3.5. Cechy charakterystyczne reakcji alkaliów z węglanami ........ 110
   Literatura ............................................................................. 111
4. Metody zapobiegania reakcji alkaliów z kruszywem 

4.1. Stosowanie kruszyw niereagujących z wodorotlenkami sodu i potasu 

4.2. Ograniczenie zawartości sodu i potasu w betonie 

4.3. Zastosowanie dodatków mineralnych 

4.3.1. Wpływ dodatków mineralnych na ekspansję betonu 

4.3.2. Wpływ dodatków mineralnych na skład roztworu w porach betonu 

4.3.3. Wpływ naturalnej pucolany na reakcję alkaliów z krzemionką 

4.4. Domieszki chemiczne zapobiegające ekspansji 

4.5. Zapobieganie ekspansji spowodowanej reakcją alkaliów z węglanami 

Literatura 

5. Metody badań reaktywności kruszyw 

5.1. Metody badań reaktywności kruszyw krzemionkowych z wodorotlenkami sodu i potasu 

5.1.1. Metody ASTM 

5.1.2. Metody RILEM 

5.1.3. Metody zawarte w polskich normach 

5.1.4. Podsumowanie metod badań reaktywności kruszyw z NaOH i KOH 

5.2. Metody oceny dodatków i domieszek zapobiegających reakcji alkaliów z krzemionką 

5.3. Inne metody badań reakcji alkaliów z kruszywem 

5.4. Metody badań reakcji alkaliów z węglanami w celu oceny reaktywności kruszywa 

Literatura 

6. Diagnostyka reakcji alkaliów z kruszywem 

6.1. Analiza uszkodzeń wybranych konstrukcji betonowych 

6.2. Metody badań uszkodzeń powstałych w następstwie reakcji alkaliów z krzemionką 

6.3. Przemieszczenia i deformacje spowodowane ekspansją 

6.4. Kryteria oceny trwałości betonu 

Literatura 

7. Wewnętrzna korozja siarczanowa 

7.1. Hipotezy ekspansji betonu związanej z opóźnionym powstawaniem ettringitu 

Literatura
Spis treści

7.1.1. Hipoteza związaną z ciśnieniem wywołanym wzrostem kryształów ........................................ 178
7.1.2. Hipoteza ekspansji zaczynu ................................................................. 180
7.1.3. Wpływ powstającego ettringitu na ekspansję ........................................ 182
Literatura ................................................................................................................. 183

8. Czynniki wpływające na trwałość ettringitu .................................................. 186
8.1. Wpływ temperatury i pH roztworu porowego ............................................ 186
8.2. Rola fazy C-S-H ......................................................................................... 193
Literatura ................................................................................................................. 200

9. Czynniki wpływające na wewnętrzną korozję siarczanową betonu ........ 204
9.1. Skład cementu i jego właściwości ............................................................... 204
9.2. Skład betonu ............................................................................................... 212
9.3. Warunki dojrzewania .................................................................................. 213
9.4. Wpływ rodzaju kruszywa ............................................................................ 219
Literatura ................................................................................................................. 224

10. Metody zapobiegania powstawaniu opóźnionego ettringitu ..................... 228
Literatura ................................................................................................................. 231

11. Równoczesne występowanie reakcji alkaliów z krzemionką i powstawanie opóźnionego ettringitu ........................................................................... 233
11.1. Wpływ zawartości SO₃ w cemencie na opóźnione powstawanie ettringitu ... 234
11.2. Wpływ zawartości sodu .............................................................................. 238
11.3. Znaczenie ettringitu towarzyszącego reakcji alkaliów z kruszywem ......... 243
11.4. Fazy uboczne towarzyszące reakcji alkaliów z krzemionką ...................... 247
Literatura ................................................................................................................. 249

12. Przykłady konstrukcji uszkodzonych w wyniku reakcji alkaliów z krzemionką i opóźnionego powstawania ettringitu ......................................................... 253
Literatura ................................................................................................................. 266

Śrzedzenie .................................................................................................................. 269

Summary .................................................................................................................... 269
Przedmowa

Beton jest powszechnie stosowanym materiałem w konstrukcjach budowlanych, który dla zapewnienia ich trwałości powinien zachować dobre właściwości użytkowe w możliwie najdłuższym czasie eksploatacji. W nowej normie dotyczącej betonu stwierdza się, że materiał ten ma być trwały przez nie mniej niż 50 lat. Niedostateczna trwałość przejawia się zniszczeniem betonu, które może być spowodowane oddziaływaniem środowiska zewnętrznego (zmienne obciążenie zewnętrzné, środowisko o dużych stężeniach chlorków i siarczanów, oddziaływanie mrozu), czyli korozją zewnętrzną. W pewnych przypadkach wynikających z błędów wykonawstwa i niedostatku wiadomości z zakresu chemii betonu konstrukcja betonowa może ulec wcześniejszemu samozniszczeniu, czyli korozji wewnętrznej. Przyczyną korozji wewnętrznej betonu może być reakcja kruszyw z wodorotlenkami sodu i potasu* lub wewnętrzna korozja siarczanowa będąca wynikiem opóźnionego powstawania ettringitu.

Monografia powstała jako wynik wieloletniej działalności naukowej autorki dotyczącej w znacznej mierze zagadnień trwałości betonu, obejmujących wpływ czynników zewnętrznych oraz korozję wewnętrzną. W przypadku korozji wewnętrznej jej przyczyną stanowią składniki betonu, z których najbardziej popularne są reaktywne kruszywa oraz zbyt duża zawartość siarczanów.

Publikacja obejmuje szereg zagadnień dotyczących reakcji alkalia-krzemionka poczynając od mechanizmu reakcji, czynników warunkujących jej wystąpienie oraz jej następstw. Opisano także metody zapobiegania korozji wewnętrznej betonu oraz metody badań reaktywności kruszyw z wodorotlenkami sodu i potasu, metody oceny skuteczności działania dodatków i domieszek, ograniczających jej następstwa. Z wodorotlenkami sodu i potasu wiąże się drugi rodzaj korozji wewnętrznej, a mianowicie tak zwane opóźnione powstawanie ettringitu. Proces opóźnionego powstawania ettringitu dotyczy głównie betonów, które zostały poddane obróbce cieplnej, w temperaturze przekraczającej 70°C. Zaobserwowano także przypadki uszkodzeń elementów betonowych, związanych z opóźnionym powstawaniem ettringitu nie dojrzewających w podwyższonej temperaturze, w których występowała równocześnie ta faza.
W monografi przedstawiono także wzbogacone ilustracjami przykłady uszkodzonych konstrukcji betonowych w następstwie reakcji alkaliów z kruszywem, opóźnionego powstawania ettringitu oraz jednoczesnego występowania obydwu procesów.

Obszerna literatura z zakresu korozji wewnętrznej betonu świadczy, że jest to jedno z ważniejszych zagadnień współczesnej technologii betonu.

* Autorka, dla skrócenia opisu, będzie często używała potocznej nazwy alkalia.
Reakcja wodorotlenków sodu i potasu z krzemionką

Reakcja alkaliów z krzemionką po raz pierwszy została odkryta w stanie Kalifornia w 1930 roku i opisana przez Stantona w 1940 roku [1]. Wykazał on, że ekspansja beleczek zaprawy zależy od zawartości Na$_2$O $^{1}$ w cemencie, rodzaju i ilości reaktywnej krzemionki w kruszywie, wilgotności i temperatury, a metodą zapobiegania ekspansji może być dodatek pucolany. Po odkryciu Stantona zdiagnozowano reakcję alkaliów z krzemionką jako przyczynę uszkodzeń wielu budowli inżynierskich i podjęto badania tego procesu w USA i innych krajach (Dania, Australia). Reakcja alkaliów z krzemionką jest obecnie uznawana przez USA za główną przyczynę pogorszenia właściwości betonu; przypadki tej reakcji zaobserwowano także w krajach sąsiadujących z USA, jak również w innych państwach na świecie.

1.1. Mechanizm reakcji

Reakcja alkaliów z krzemionką jest najbardziej powszechnym typem reakcji sodu i potasu z kruszywem i wynika z obecności pewnych składników w kruszywach wytworzonych z niektórych granitów, gnejsów, skał wulkanicznych, szarogłazów, filitów, tułów i wapieni zsyfikowanych. W reakcji alkaliów z krzemionką niektóre odmiany krzemionki, występujące w kruszywie, reagują z wodorotlenkami sodu i potasu w betonie, w następcie czego tworzy się żel, który absorbuje wodę z otaczającego zacynku cementowego lub z otoczenia. Żel ten absorbując wodę zwiększa swoją objętość i wywołuje ciśnienie przekraczające wytrzymałość betonu na rozciąganie, powodujące jego ekspansję i pękanie. Schemat tego procesu pokazano na rysunku 1.1 [2].

Roztwór w porach betonu składa się głównie z jonów sodu Na$^+$ i potasu K$^+$ oraz jonów hydroksyloowych OH$^-$, co wiąże się z wysokim pH (zwykle od 13,2 do 14,0). Przy wysokim pH, wodorotlenki sodu i potasu reagują z grupami silanolowymi

---

$^{1}$ Na$_2$O = równoważnik sodowy sumy alkaliów, a więc Na$_2$O + 0,658 K$_2$O.
Korozja wewnętrzna betonu

(SiOH), a następnie powodują rozrywanie mostków tlenowych (Si-O-Si) w więźbie krzemionki oraz jej rozpad z utworzeniem żelu.


Rys. 1.1. Schemat przedstawiający przebieg procesu związanego z reakcją alkaliów z krzemionką [2]


Podobny dwustopniowy model reakcji alkalia-krzemionka zaproponowali Dent Glasser i Kataoka [7]. Krzemionka bezpostaćowa jest zbudowana z nieregularnej więźby czworostanów [SiO₄]₄⁻, w których niektóre jony tlenu zastąpione są grupami OH. Po umieszczeniu w roztworze wodorotlenku sodu zachodzi jako pierw-
sza reakcja kwasowo-zasadowa grup silanolowych (Si-OH) z jonami OH⁻ z roztworu alkalicznego, a zobojętnienie ujemnego ładunku na Si-O⁻ następuje przez jon Na⁺ [7]. Kolejna reakcja jonów Na⁺ i OH⁻ powoduje rozrywanie mostków tlenowych. Krzemionka przechodzi do roztworu w postaci jonów (H₂SiO₄)²⁻. Obie reakcje odbywają się równocześnie oraz biorąc w nich udział jony Na⁺ i OH⁻, w etapie końcowym prowadząc do tworzenia ekspansywnego żelu uwodnionego krzemianu sodowo-potasowego.

Główne założenia hipotez wyjaśniających przebieg reakcji alkalia-krzemionka oparte są na właściwościach krzemionki koloidalnej i zakładają, że reakcyjna powierzchnia krzemionki pokryta jest warstwą grup silanolowych. Roztwory w poch betonu są głównie roztworami wodorotlenków sodu i potasu. Pod wpływem działania roztworu wodorotlenków sodu i potasu na ziarno krzemionki, reaktywne grupy silanolowe są najpierw zobojętniane, zgodnie z następującym równaniem:

\[ \equiv \text{Si-OH} + \text{Na}^+ + \text{OH}^- \rightarrow \equiv \text{Si-O}^- \text{Na}^+ + \text{H}_2\text{O} \]  
(1.1)

Przy wyższych stężeniach jony sodu i potasu oddziałują także na mostki tlenowe powodując ich rozrywanie, co można przedstawić schematycznie:

\[ \equiv \text{Si-O-Si} \equiv + 2\text{Na}^+ 2\text{OH}^- \rightarrow 2 (\equiv \text{Si-O}^- \text{Na}^+) + \text{H}_2\text{O} \]  
(1.2)

Ujemne ładunki niemostkowych jonów tlenu zostają zrównoważone przez kationy sodu (potasu). Równocześnie pewna ilość grup silanolowych pozostaje na powierzchni krzemionki (rys. 1.2). Podczas tego procesu następuje zniszczenie trójwymiarowej więźby krzemionki i utworzenia polimineralnego żelu Na-K-Si, dobrze rozpuszczalnego w wodzie. Stopień zdefektowania więźby krzemionki oraz stężenie jönów sodu i potasu w fazie ciekłej i warunki ich dyfuzji do powierzchni reaktywnej krzemionki decydują o postępie reakcji. Jony krzemianowe pozostają w miejscu reakcji tworząc żel, który początkowo powstaje w miejscu ziarna reaktywnej krzemionki, a następnie w miarę wzrostu zawartości wody może przemieszać się w betonie wypełniając pory wokół kruszywa [8].

Jony wapnia mające nieznacznie większe wymiary od jonów sodu, lecz mniejsze od potasu oraz dużą otoczkę solwatacyjną (co powoduje dużą promień jonu zhydratyzowanego), pozostają w pobliżu powierzchni powstającego żelu krzemianowego [9]. Wszystkie te procesy korozji przebiegają w matrycy zaczynu złożonej głównie z fazy C-S-H [10].

Obraz mikrostruktury betonu z reaktywnym kruszywem krzemionkowym przedstawiono na rysunku 1.3. Produkt reakcji – żel uwodnionego krzemianu sodowo-potasowo-wapniowego – występuje w miejscu ziarna opalu oraz wypełnia pory w otaczającym zaczynie cementowym.
Etap 1. Reaktywna krzemionka

Etap 2. Oddziaływanie jonów Na⁺ i OH⁻ na ziarno krzemionki

Etap 3. Niektóre jony Na⁺ są zastępowane przez jony Ca²⁺

Rys. 1.2. Schemat przedstawiający więźbę amorficznej krzemionki przechodzącą w formę pęczniejącego żelu uwodnionego krzemianu sodowego w wyniku oddziaływania roztworu wodorotlenku sodu [9]
1. Reakcja wodorotlenków sodu i potasu z krzemionką

W obecności wapnia wytrąca się żel krzemionkowy, składający się przede wszystkim z sodu, potasu i krzemionki, z małą ilością wapnia. Żel tworzy się wewnątrz i/lub wokół ziaren kruszywa, jest higroskopijny i ma zdolność do wchłaniaenia wody i pęcznienia. Pęcznienie żelu może powodować ekspansję i pękanie betonu. Podczas absorpcji wody żel pęcznie, a wnikające do niego jony wapnia zastępują jony alkaliów. Wtórne przejście jonów sodu i potasu do roztworu w porach betonu pozwala na kontynuację reakcji, podczas gdy żel staje się stopniowo bardziej bogaty w wapń. Reakcja wodorotlenków sodu i potasu z krzemionką prowadzi do obniżenia stężenia jonów Na⁺ i K⁺ oraz jonów OH⁻ w roztworze w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierających małe ilości wapnia. Istnieją dowody na to, że część jonów sodu i potasu w żelu jest zamieniana z czasem na wapń, a wodorotlenki sodu i potasu są uwalniane do roztworu w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierających małe ilości wapnia. Istnieją dowody na to, że część jonów sodu i potasu w żelu jest zamieniana z czasem na wapń, a wodorotlenki sodu i potasu są uwalniane do roztworu w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierających małe ilości wapnia. Istnieją dowody na to, że część jonów sodu i potasu w żelu jest zamieniana z czasem na wapń, a wodorotlenki sodu i potasu są uwalniane do roztworu w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierających małe ilości wapnia. Istnieją dowody na to, że część jonów sodu i potasu w żelu jest zamieniana z czasem na wapń, a wodorotlenki sodu i potasu są uwalniane do roztworu w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierających małe ilości wapnia. Istnieją dowody na to, że część jonów sodu i potasu w żelu jest zamieniana z czasem na wapń, a wodorotlenki sodu i potasu są uwalniane do roztworu w porach betonu ze względu na tworzenie się uwodnionego żelu krzemianów sodowo-potasowych (CaO-Na₂O-K₂O-SiO₂-H₂O), zawierając...
ąną zdolność pęcznienia i lepkość do spowodowania uszkodzenia otaczającego go zaczynu cementowego [13].

\[
\text{Na}^+, \text{K}^+ \rightarrow \text{stężenie zmniejsza się}
\]

\[
\text{Ca}^+ \rightarrow \text{stężenie zwiększa się}
\]

lepkość zwiększa się
zmiany objętości zmniejszają się
zmniejsza się absorbpcja wody
wytrzymałość mechaniczna zwiększa się

niska lepkość żelu \(\rightarrow\) wysoka lepkość żelu \(\rightarrow\) krystalizacja \(\rightarrow\) faza C-S-H \(\rightarrow\) zmiany struktury

**Rys. 1.4. Zmiany mikrostruktury i właściwości produktu reakcji alkalia-krzemionka [13]**

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
czas [tygodnie] & \text{stężenie jonów OH}^- [mol/dm^3] \\
\hline
0 & 0.00 \\
12 & 0.06 \\
24 & 0.10 \\
36 & 0.08 \\
48 & 0.06 \\
\hline
\end{tabular}
\end{table}

**Rys. 1.5. Zmiany składu roztworu w porach i ekspansji betonu zawierającego reakcywną krzemionkę [14]**

Porównanie składu roztworu wydzielonego z porów betonu, zawierającego reakcywną krzemionkę oraz ekspansji belezek betonowych z tej samej mieszanki (rys. 1.5), wykazało, że alkaliczność roztworu w porach zmniejsza się stopniowo przez okres 12 tygodni, po czym stabilizuje się, wykazując stężenie jonów hydroksylowych między 0,26 i 0,27 mol/l, natomiast ekspansja betonu trwa dłużej niż ten okres, w którym stężenie sodu i potasu w roztworze w porach osiąga ustaloną wartość. Można to wyjaśnić obièaniem alkaliów, w których sól i potas uwalniane z żelu wchodzą ponownie w reakcję z kruszywem. W wyniku tego procesu ekspansja...
1. Reakcja wodorotlenków sodu i potasu z krzemionką

trwa dłużej [14]. Obieg alkaliów (rys. 1.6) może częściowo wyjaśniać długotrwały proces ekspansji w wielu dużych betonowych zaporach, nie prowadzi on jednak do osiągnięcia maksymalnej wielkości, tak jak to obserwujemy w przypadku próbek laboratoryjnych (przechowywanych nad wodą), w których zależność ekspansji od czasu zwykle przedstawia krzywa w kształcie litery S, a wartość maksymalna osiągana jest po kilka latach.

W dużych konstrukcjach dzięki obiegowi jonów sodu i potasu, alkalia mogą nadal reagować z krzemionką (reaktywna krzemionka jest zużywana), przy czym w laboratorium wymywanie alkaliów z próbek zmniejsza, z upływem czasu, ich stężenie do poziomu niższego niż to jest konieczne dla przebiegu reakcji.

W układzie: reaktywna krzemionka – cement – woda, początkowa reakcja wytwarza na ziarnach kruszywa cienką warstwę niepęknięcącą, która oddziela nieprzerzeagowaną krzemionkę od roztworu w porach betonu. Podczas dalszej reakcji jony sodu, potasu i wapnia dyfundują przez tę warstwę z otaczającego roztworu do warstw powierzchniowych krzemionki. Względne stężenia jonów wapnia, sodu i potasu w roztworze otaczającym żel decydują o jego właściwościach. W przypadku przewagi jonów wapniowych i wzbogacenia żelu w te jony, nie zachodzi ekspansja. W hipotezie Powersa i Steinoura [5, 6], przy tworzeniu kompleksu Na(K)-S-H decydujące znaczenie mają tylko wodorotlenki sodu i potasu. Zdolność do ekspansji kompleksu Na(K)-S-H zależy od stosunku Na(K)/S w żelu, a z jego wzrostem

Rys. 1.6. Schemat obiegu jonów sodu i potasu w betonie [14]
zmniejsza się lepkość tego kompleksu aż do przejścia w stan ciekły. Pęczniejący żel nie zawiera wapnia lub zawiera go tylko w niewielkich ilościach.

Chatterji [15] w rozważaniach dotyczących mechanizmu reakcji alkalia-krzemionka uwzględnił zarówno szybkość dyfuzji jonów, jak i wpływ siły jonowej roztworu na reakcję powstawania żelu i jego ekspansję. Wnikanie jonów OH⁻ w warstwy powierzchniowe reaktywnej krzemionki w środowisku zasadowym zależy od pH i siły jonowej roztworu. Rozrywanie mostków tlenowych w więźbie krzemionki przez jony OH⁻ zachodzi zgodnie z następującym schematem:

$$\equiv \text{Si} - \text{O} - \text{Si} \equiv + \text{OH}^- \rightarrow \equiv \text{Si} - \text{OH}^- + \text{Si} - \text{O}^-$$ (1.3)

Stwarza to warunki do dalszej reakcji z grupami wodorotlenowymi z uwalnianiem jonów krzemianowych do roztworu. Przy stałym pH i sile jonowej roztworu, wnikanie jonów OH⁻ w strukturę reaktywnej krzemionki zmniejsza się ze wzrostem promienia uwodnionego kationu, tj. zmniejsza się w kolejności od K⁺, Na⁺, Li⁺ do Ca++. W elektrolicie o złożonym składzie jakim jest faza ciekłej w betonie, zarówno jony sodu, potasu, jak i wapnia biorą udział w reakcji z krzemionką. Dyfuzja jonów krzemianowych od ziarna krzemionki do roztworu zależy od stężenia jonu Ca²⁺ w bezpośrednim jego otoczeniu. Występująca ekspansja jest wynikiem różnicy pomiędzy masą wnikających jonów sodu, potasu, wapnia i jonów wodorotlenowych w wodzie a masą dyfundujących na zewnątrz jonów krzemianowych. Chatterji uważa, że kompleks C-Na-(K)-S ma również właściwości ekspansywne [15]. Jony OH⁻ przyspieszają reakcję z krzemionką.

Już we wcześniejszych pracach wykazano, że reakcja wodorotlenków sodu i potasu z krzemionką powoduje zmianę stężenia jonów sodu, potasu i wapnia w reaktywnych ziarnach [16]. Proces ten Chatterji [17] wyjaśnia tworzeniem się ujemnego potencjału na powierzchni reaktywnej krzemionki i gromadzeniem się jonów dodatnich w warstwie podwójnej. Jednak wyniki Diamonda [18] wykazują, że tak długo, jak współczynnik Ca²⁺/Na⁺ jest wysoki w warstwie podwójnej dyfuzja jonów krzemianowych jest bardzo mała i tworzy się kompleks C-Na-(K)-S-H. Z drugiej strony, roztwór wodorotlenków sodu i potasu obniża rozpuszczalność Ca(OH)₂ w roztworze w betonie i mała ilość jonów Ca²⁺ w warstwie podwójnej, a jony krzemianowe mogą swobodnie dyfundować do roztworu i ekspansja nie występuje Ten mechanizm wyjaśnia także obecność krytycznej zawartości alkaliów, poniżej której znieszczenie nie następuje. Wytwarzanie ciśnienia wymaganego wielkości wymaga odpowiedniej siły jonowej oraz stężenia jonów OH⁻. W przypadku cementu portlandzkiego oba czynniki są zapewnione przez obecność jonów sodu i potasu.

Hipoteza mechanizmu reakcji alkalia-krzemionka przedstawiona przez Chatterji [17] znalazła zastosowanie praktyczne. Bardzo powszechna praktyka stosowania cementu portlandzkiego o małej zawartości sodu i potasu nie przeciwdziała reakcji
1. Reakcja wodorotlenków sodu i potasu z krzemionką

z krzemionką, jeżeli ma miejsce dopływ jonów sodu i potasu ze środowiska zewnętrznego lub wystąpi lokalne zwiększenie stężenia tych jonów, wynikające z odparowania wody z porów betonu. Jeśli podczas eksploatacji konstrukcji betonowej wystąpi którykolwiek z powyższych procesów, to może nastąpić jej zniszczenie. Mechanizm ten wyjaśnia także wpływ podwyższonej temperatury na ekspansję, gdyż zwiększenie stężenia wodorotlenków sodu i potasu w wyższej temperaturze może powodować zmniejszenie stężenia Ca²⁺ w warstwie podwójnej i skutkiem tego zwiększa się dyfuzyja jonów krzemianowych od ziaren, i mimo przebiegu reakcji alkalia-krzemionka ekspansja nie występuje. Ludwig [19] również stwierdził, że w ustalającej się dynamicznej równowadze wyższa temperatura przyspiesza reakcję, lecz równocześnie zmniejsza ekspansję po dłuższym okresie.


We współpracy publikowanej pracy [22] przedstawiono model procesu powstawania rys oparty na tworzeniu otoczki reakcyjnej wokół ziaren kruszywa (rys. 1.7). W początkowym etapie reakcji alkaliów z krzemionką tworzący się uwodniony krzemian sodu i potasu nie powoduje powstawania niszczących naprężeń. Proces dezstrukcji rozpoczyna się, gdy reaktywne ziarno krzemionki zostanie otoczone warstwą reakcyjną zbudowaną z uwodnionych krzemianów sodowo-potasowo-wapniowych. Mechanizm powstawania ciśnienia ekspansji przebiega w następujących etapach:

- reaktywne ziarno kruszywa krzemionkowego znajduje się w roztworze w porach zacynnym cementowego, zawierającym jony sodu, potasu, jony wodorotlenowe oraz małą ilość jonów wapnia;
- reakcja wodorotlenków sodu i potasu z krzemionką powoduje powstawanie na powierzchni kruszywa uwodnionego krzemianu sodowo-potasowego w postaci żelu. Włączanie jonów hydroksylowych do tworzonego żelu powoduje przesunięcie równowagi w roztworze w porach i prowadzi do przekształcenia jonów wapnia do roztworu;
- jony wapnia reagują z uwodnionym krzemianem sodowo-potasowym i tworzą się związkę warstewka produktów reakcji na powierzchni ziarna kruszywa. Przez otoczkę mogą przenikać jony alkaliów i jony wodorotlenowe do powierzchni ziarna kruszywa, natomiast ograniczona jest dyfузja jonów krzemianowych o znacznej lepkości;
- dalsze przenikanie jonów sodu, potasu i hydroksylowych przez warstewkę reakcyjną prowadzi do powstawania większych ilości żelu, który generuje ciśnienie pęcznienia. W następstwie pojawiają się spękania ziarna kruszywa i otaczającego zaczynu cementowego.

Według tego modelu reakcja alkaliów z krzemionką nie powoduje destrukcji betonu, jeżeli zakończy się przed utworzeniem warstewki reakcyjnej na ziarnie kruszywa. Model ten wyjaśnia także, dlaczego reaktywne, małe ziarna krzemionki nie powodują niszczenia betonu: drobne ziarna krzemionki ulegają całkowitej przemianie w uwodniony krzemian sodowo-potasowy, przed utworzeniem otoczkii reakcyjnej i zachowują się jak pucolana [23]. Z kolei Hong i Glasser stwierdzili, że ze spadkiem C/S w fazie C-S-H powstającej w reakcji pucolanowej, faza ta wiąże

*Rys. 1.7. Schemat przedstawiający mechanizm powstawania rys w następstwie reakcji sodu i potasu z krzemionką: R' – jony sodu lub potasu [22]*
wiecej sodu i potasu [24]. Natomiast Della Roy zaobserwowała, że w roztworze jest mniejsze stężenie sodu i potasu, gdy cement zawiera 50% żużła [25].

Uwodniony żel powstający w rysach w ziarnie kruszywa ma stosunek CaO/SiO₂ mniejszy niż w większych porach w zaczynie cementowym (rys. 1.8) [26].

Rys. 1.8. Żel krzemię potasowo-wapniowego wokół ziarna kruszywa oraz w jego spękaniach [26]

1.2. Mechanizm ekspansji

Dla wyjaśnienia mechanizmu ekspansji spowodowanej przez reakcję jonów sodu i potasu z krzemionką najczęściej rozważane są dwie główne hipotezy [27]. Pierwsza z nich zakłada, że powstające naprężenie w betonie jest związane z wchłanianiem wody z porów betonu przez powstający żel uwodnionego krzemię sodowo-potasowo-wapniowego i pęcznieniem żelu. Ekspansja w tym przypadku zależy od szybkości powstawania, zawartości oraz właściwości fizykochemicznych żelu. Przy względnie szybkim powstawaniu pęczniącego żelu w przestrzeni ograniczonej przez stwardniały zaczyn cementowy tworzą się naprężenia i mikrorysy wokół reagującego ziarna krzemięń. Nagromadzenie higroskopijnych żeli Na-K-Ca-SiO₄ 4H₂O, absorbujących dużą ilość wody z otoczenia prowadzi do ekspansji. właściwości fizykochemiczne żelu uwodnionego krzemięwu sodowo-potasowego zależą więc od stosunku Na₂O/SiO₂, co wpływa na właściwości reologiczne żelu, a przede wszystkim na jego lepkość [28]. Uwodnione krzemię potasu mają mniejszą lepkość i trudniej przechodzą w zol, natomiast lepkość krzemięń sodu zmniejsza się ze wzrostem stosunku sodu do krzemięńki i jest najmniejsza, gdy stosunek Na:Si wynosi około 1, a przy względnie wysokiej zawartości wody żel gwałtownie przechodzi w zol. Początkowo powstały z roztworu żel jest krzemięnu potasu, a następnie włączane są jony sodu, żel ma mniejszą lepkość i przemieszcza się przez system rys i mikroporów do zaczynu cementowego, dalej od miejsca reakcji.
Korozja wewnętrzna betonu

Żel wchłania wodę i przechodzi w zół o mniejszej lepkości. Im mniejszy stosunek jonów sodu i potasu do krzemionki, tym większa lepkość żelu. Niektórzy badacze wykazują, że to właśnie lepkość żelu decyduje o jego właściwościach pęczniących [29]. Vivian uważa, że jedynie żele o dużej lepkości odpowiedzialne są za niszczenie betonu [30]. Według Jonesa [29] zół o niskiej lepkości mogą przenikać przez strukturę betonu nie powodując zniszczenia, natomiast Glasser [7] twierdzi, że zół krzemianów sodu i potasu mają wystarczającą lepkość do wywołania naprężeń niszczących. Dron i Brivot [31] podają, że uwodnione żele krzemianów sodu i potasu wykażą tendencję do osadzania się w mikroporach i w kanałach łączących pory daleko od reaktywnego ziarna. Idom i Golterman [32, 33] oparli mechanizm powstawania ciśnienia ekspansji na procesie tworzenia uwodnionego żelu wewnątrz ziarna reaktywnego, co generuje naprężenia powodujące spękania zarówno w ziarnie krzemiany, jak i w otaczającym zaczynie cementowym.

Cisnienie wytworzone przez żel krzemionkowy wzrasta z czasem reakcji (rys. 1.9) [34]. Wyróżnia się dwa etapy reakcji, początkowy, charakteryzujący się szybszym wzrostem ciśnienia, po którym następuje drugi etap – z wolniejszym wzrostem ciśnienia. Uważa się, że pierwszy etap wzrostu ciśnienia wynika głównie ze wzrostu ilości żelu. W początkowym okresie reakcji rodzaj kationu (sodowy czy potasowy) nie ma wyraźnego wpływu na wielkość wytworzonego ciśnienia [34].

Rys. 1.9. Zmiana ciśnienia w zależności od czasu reakcji alkaliów z krzemionką [34]

Ekspansja betonu wynikająca z reakcji alkaliów z krzemionką i związane z nią tworzenie mikryrów zależy od zdolności matrycy cementowej do stawiania oporu naprężeniom wywołanym przez tę reakcję. W betonie występują zawsze defekty, dlatego do spękania betonu nie jest konieczne wysokie ciśnienie wywołujące uszkodzenia, lecz wystarczająco małe ciśnienie potrzebne do propagacji szczelin. Cisnienie potrzebne do wytworzenia rys w betonie jest więc dużo niższe niż wytrzymałość betonu na rozciąganie [35]. Model przedstawiający mechanizm powstawania rys w reakcji alkaliów z krzemionką pokazano na rysunku 1.10. W sta-
diyum pierwszym pęczniejący żel wywołuje naprężenia wewnętrzne, lecz nie po-
westają mikrorysy, w stadium drugim – naprężenia są wystarczająco wysokie do
powstania mikrozarysowań, lecz towarzyszy temu niewielka ekspansja. W sta-
dium trzecim żel przemieszcza się w niektóre mikroszczeliny i następuje powolne
zwiększenie naprężenia w betonie, a w stadium czwartym naprężenia wewnętrzne
wytworzone dookoła żelu wypełniającego mikropękania są wystarczająco duże,
aby spowodować znaczną ekspansję.

![Diagram]

**Rys. 1.10. Model przedstawiający mechanizm powstawania rys w reakcji alkaliów z krze-
mionką [27]**

W drugiej hipotezie – teorii ciśnienia osmotycznego – założono, że żel cemento-
wy pełni rolę blony półprzepuszczalnej przez którą dyfundują jony sodu i potasu,
jony hydroksylowe i woda. Blona półprzepuszczalna ogranicza ruch jonów krzemia-
nowych, co prowadzi do powstania gradientu stężeń, i generuje ciśnienie osmotycz-
ne. Uznano również, że jony potasu i sodu dyfundują łatwiej przez blonę półprze-
puszczalną niż jony wapnia [21]. Dent Glasser [36] uważa, że to sam żel krzemianów
sodu i potasu pełni rolę blony półprzepuszczalnej oddzielając obszary o różnych
stężeniach jonów. Powstający wokół kruszywa żel uwodnionego krzemianu chłonie
wodę na skutek czego pęcznieje. Ponieważ z termodynamicznego punktu widzenia
utworzenie blony półprzepuszczalnej nie jest warunkiem koniecznym do spowodo-
wania migracji cząstek wody dlatego mechanizm osmotyczny i mechanizm pęczenie-

Potencjalne naprężenie będące wynikiem ciśnienia osmotycznego, wytworzonego przez żel powstający w reakcji alkaliów z krzemionką, określone przez Moore [38] z porównania prężności pary wodnej w żelu i w fazach wewnętrznych wynosiło od 45 do 140 MPa. Natomiast maksymalne naprężenie wytworzone przez syntetyczne żele krzemianów sodu i potasu z niewielką ilością wapnia wynosi około 10-11 MPa [39], w przypadku betonu, w którym zachodzi reakcja jonów sodu i potasu z krzemionką, nie jest tak wysokie i nie przekracza 6-7 MPa [21]. Powstający wokół ziarna kruszywa żel krzemianów sodu i potasu absorbuje wodę i pęczniejąc wywiera ciśnienie na otaczający zaczyn cementowy. Początkowo powstają odkształcenia promieniste, nie powodujące ekspansji, następnie tworzą się rysy wokół ziarna i mikroskopijne szczeliny w zaczynie prowadzące do pękania zaczynu. Pory i przestrzenie międzyziarnowe w stwardniałym zaczynie cementowym otaczającym reagujące...
ziarna krzemionki wypelniają się zolem krzemianów sodu i potasu, czemu nie towarzyszą naprężenia. Rozproszenie części produktu reakcji opóźnia i zmniejsza ekspancję betonu. W obszarze betonu zniszczonego przez reakcję alkaliów z kruszywem obserwuje się żel krzemionkowy rozmieszczony w rysach i porach, wydostający się ze szczelin na powierzchnię betonu, oraz otoczki żelowo wokół ziaren kruszywa.

W tablicy 1.1 zestawiono dane literaturowe dotyczące wyników badań zależności reakcji wodorotlenków sodu i potasu z krzemionką i wynikających z niej ciśnieniem. Z przeglądu literatury wynika, że występują bardzo duże różnice w wielkościach obserwowanych naprężeń wywołanych tą reakcją, spowodowane różnymi warunkami prowadzonymi doświadczeń. Największy wpływ na zmniejszenie wielkości naprężeń wywołanych reakcją wodorotlenków sodu i potasu z krzemionką ma sposób prowadzenia badań, np. zastosowanie obciążenia trójosiowego lub jednoosiowego badanej próbki, a w przypadku elementu betonowego także ograniczenia jego wydłużenia przez wprowadzenie zbrojenia. Natomiast ekspansja betonu obciążonego może w warunkach laboratoryjnych osiągać znaczna wartość i podczas normowych badań laboratoryjnych ekspansja przekraczająca 0,04% wykazuje, że beton zawiera reaktywne składniki w kruszywie.

Chociaż wśród większości badaczy dominuje pogląd, że naprężenia powstające w betonie w wyniku reakcji alkaliów z krzemionką są następstwem pęcznienia uwodnionego żelu krzemianów sodu i potasu, istnieją przesłanki, że mogą oddziaływać inne mechanizmy. Wiecker i współpracownicy [45, 46] założyli, że żel uwodnionego krzemianu sodowo-potasowego może mieć budowę analogiczną do krystalicznych krzemianów warstwowych, a przeprowadzone przez nich badania modelowe potwierdziły możliwości powstawania uwodnionych krzemianów warstwowych w betonie. W przypadku reakcji jonów sodu i potasu z krzemionką roztrwór w porach betonu, zawierający wodorotlenki sodu i potasu, rozpuszcza coraz więcej SiO₂, a wzrastający stosunek SiO₂/Me₂O prowadzi do przemiany pierwotnie utworzonych monokrzemianów do warstwowych. Również odparowanie wody z roztworu z porów betonu, powodujące wzrost stężenia jonów, oraz reakcja wymiany kationu wapnia z kationami sodu lub potasu, prowadzą do podobnego procesu. Natomiast obecne w układzie jony wapnia utrudniają kondensację anionów krzemianowych przez formowanie bardzo słabo rozpuszczalnych osadów już z monokrzemianami. Ekspansję związaną z reakcją sodu i potasu z krzemionką wiazą oni z pęcznieniem krzemianów warstwowych w wyniku reakcji pewnych krzemianów sodu (np. kanemitu) przejściowo występującymi w betonie, i reaktywnym kruszywem krzemionkowym [45]. Nadal wydaje się jednak niepoddawalne, że w reakcji alkaliów z krzemionką wytworzyły kompleks C-N-K-S-H odgrywa główną rolę (nawet, jeśli nie wyłączoną) i jest podstawową przyczyną destrukcji betonu.
**Tablica 1.1. Wybrane dane z literatury dotyczące badań ciśnienia wywołanego reakcją wodorotlenku sodu z krzemionką**

<table>
<thead>
<tr>
<th>Autorzy</th>
<th>Warunki badań</th>
<th>Rodzaj próbek</th>
<th>Kruszywo</th>
<th>Naprężenie [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moore [38] i Diamond [21]</td>
<td>dane fizykochemiczne</td>
<td>–</td>
<td>–</td>
<td>45-140</td>
</tr>
<tr>
<td>Diamond [18]</td>
<td>ocena przybliżona</td>
<td>beton</td>
<td>–</td>
<td>6-7</td>
</tr>
<tr>
<td>Struble i Diamond [39]</td>
<td>komórka osmotyczna</td>
<td>syntetyczny żel</td>
<td>–</td>
<td>10-11</td>
</tr>
<tr>
<td>Mc Gowan i Vivian [4]</td>
<td>jednoosiowe ograniczenie długości, temperatura 20°C, 100% w. wzg.</td>
<td>bełeczki zapraw</td>
<td>opal</td>
<td>0,35</td>
</tr>
<tr>
<td>Hobbs [27]</td>
<td>jednoosiowe ograniczenie długości, temperatura 20°C, 100% w. wzg.</td>
<td>bełeczki betonowe</td>
<td>opal</td>
<td>4</td>
</tr>
<tr>
<td>Durand i inni [40]</td>
<td>jednoosiowe ograniczenie długości, temperatura 38°C</td>
<td>beton w rurach stalowych</td>
<td>zsylikowany wapień</td>
<td>0,24</td>
</tr>
<tr>
<td>Fujii i inni [41]</td>
<td>jednoosiowe ograniczenie długości, temperatura 40°C, 100% w. wzg.</td>
<td>bełeczki betonowe</td>
<td>andezyt</td>
<td>4</td>
</tr>
<tr>
<td>Seno i Kobayashi [42]</td>
<td>jednoosiowe ograniczenie długości, temperatura 40°C, 100% w. wzg.</td>
<td>zaprawa w rurkach</td>
<td>szkło andezytowe</td>
<td>11,8</td>
</tr>
<tr>
<td>Wood i inni [43]</td>
<td>ograniczenie długości przez zakotwiczenie walców betonowych</td>
<td>walc betonowy</td>
<td>–</td>
<td>13,5</td>
</tr>
<tr>
<td>Clergue i Corneille [44]</td>
<td>trójosiowe ograniczenie długości</td>
<td>zaprawa</td>
<td>zsylikowany wapień</td>
<td>1</td>
</tr>
<tr>
<td>Durand i inni [40]</td>
<td>jednoosiowe ograniczenie długości, temperatura 80°C, 1 N NaOH</td>
<td>bełeczki z zaprawy i betonu</td>
<td>wapień, dolomit, łupek</td>
<td>6-7</td>
</tr>
</tbody>
</table>
1. Reakcja wodorotlenków sodu i potasu z krzemionką

Współcześnie do wyjaśnienia ekspansji kompleksu uwodnionego krzemianu sodu i potasu wysunięto hipotezę, która opiera się na elektrostatycznym odpychaniu podwójnych warstw utworzonych dookoła elektrycznie naładowanych ziaren krzemionki, z powstawaniem niszczącego ciśnienia [47]. Mechanizm ten opiera się na mało prawdopodobnych założeniach, że ziarna krzemionki są odległe o mniej niż 10 nm oraz że nie ma jonów wapniowych w bliskim sąsiedztwie reaktywnych cząstek, co nie występuje w rzeczywistej mieszance betonowej [48].

Również Prezzi [49, 50] przedstawił model reakcji wodorotlenków sodu i potasu z krzemionką oparty na teorii podwójnej warstwy elektrycznej. Do określenia wzrostu ekspansji zastosował zależności charakteryzujące ekspansję mineralów ilastych zawierających jedno- i dwuwartościowe kationy, a obliczone przez niego przybliżone ciśnienie ekspansji wynosiło od 2,2 do 10,3 MPa.

Porównanie naprężeń, odkształceń i zmiany masy przez Ferraris [51] (rys. 1.12-1.14), w zależności od czasu reakcji dla próbek zaprawy z reaktywnym i niereaktywnym kruszywem, wykazuje, że naprężenie wywołane reakcją alkaliów z krzemionką po 25 dniach wynosiło około 5 MPa, a towarzysząca mu ekspansja próbek z kruszywem reaktywnym przekraczała ustalony po 14 dniach (według norm) zakres 0,1%, i nadal rosła w czasie.

Natomiast zmiana masy jest podobna zarówno dla zaprawy z kruszywem reaktywnym, jak i niereaktywnym. Wynika z tego, że ekspansja zachodzi, w tym przypadku, przy braku sorpcji wody z otoczenia, a żel krzemianów sodu i potasu wchłania wodę obecną w porach betonu, jak to zakłada Diamond [52].

Rys. 1.12. Różnica ciśnień mierzona w zaprawach z reaktywnym i niereaktywnym kruszywem w roztworze jednonormalnym NaOH w temperaturze 50°C [51]
1.3. Rola wodorotlenku wapnia

W wielu pracach wykazano, że znaczna ekspansja betonu w następstwie reakcji wodorotlenków sodu i potasu z krzemionką ma miejsce, gdy w roztworze w porach zaczynu występuje odpowiednia zawartość wodorotlenku wapnia. Reaktywna krzemionka w roztworze o dużym stężeniu wodorotlenków sodu i potasu, lecz nie zawierającym wodorotlenku wapnia, rozpuszcza się i pozostaje w roztworze.

W punkcie 1.1 podano już informacje na temat roli jonów wapniowych w reakcji alkaliów z krzemionką. Jednak klasyczne teorie opisujące reakcje wodorotlenków sodu i potasu z krzemionką z reguły nie przedstawiają jednoznacznie roli wapnia w przebiegu reakcji i ekspansji [2]. Niektórzy badacze sugerują, że obecność wodorotlenku wapnia jest wymagana aby następstwem reakcji była destrukcja betonu. Początkowo oddziaływanie wodorotlenków sodu i potasu i jonów wapnia
1. Reakcja wodorotlenków sodu i potasu z krzemionką

na reaktywną krzemionkę tworzy strefę niepęczniącego żelu C-N(K)-S-H, który oddziela krzemionkę od roztworu w porach betonu. Podczas późniejszej reakcji jony wapnia i jony sodu i potasu dyfundują przez niepęczniącą warstwę i reagują z krzemionką. W zależności od względnego stężenia jonów wapnia i jonów sodu i potasu w otaczającym roztworze w porach betonu powstaje pęczniący kompleks uwodnionego krzemianu sodowo-potasowego lub niepęczniący żel C-N(K)-S-H [13, 14]. Włączenie jonów wapnia do tego żelu zmniejsza tendencję do wystąpienia ekspansji [53].


Podobne obserwacje świadczące o rozpuszczalności krzemionki w roztworze wodorotlenku sodu i potasu przedstawili Struble [56] i Kilgour [57]. Przy braku wapnia krzemionka rozpuszczała się, natomiast po dodaniu wodorotlenku wapnia obserwowano tworzenie się produktu reakcji w postaci żelu. Także badania składu produktów reakcji alkaliów z krzemionką wykonane przez innych autorów [20, 58] wykazały, że zawsze występuje w nich krzemionka, sól, potas i wapń.

Przypuszcza się, że pierwotne źródło wapnia obecnego w żelowych produktach reakcji pochodzi z wodorotlenku wapnia oraz żelu C-S-H, będącego w pobliżu miejsc reakcji. Nie zauważono zmniejszenia się lub zaniku wodorotlenku wapnia w pobliżu reagującego kruszywa. Trudno jest jednak rozróżnić, czy żele pobierają wapń w wyniku dyfuzji wapnia do produktu reakcji, czy z rozpuszczania wapnia przez żele krzemianów sodu i potasu migrujące poza miejsca reakcji.

Regourd i współautorzy [59] wysunęli hipotezę, że źródłem wapnia w pobliżu reagujących ziaren kruszywa jest dyfuzja jonów wapnia wprowadzonych do roztworu przez żele krzemianu sodowo-potasowego z otaczającego wodorotlenku wapnia i C-S-H, stąd żel w pobliżu pierwotnie reagujących ziaren kruszywa ma znacznie mniejszą zawartość wapnia (~15-20% CaO) niż żele występujące w zacynkach cementowych, daleko od miejsca reakcji (35-40% CaO). Zwiększoną zawartość wapnia daleko od miejsc reakcji tłumaczą przemieszczaniem się żelu przez materię żelu C-S-H i pobieraniem wapnia. Diamond [18] zwraca natomiast uwagę, że na reakcję żelu krzemianu sodowo-potasowego z wodorotlenkiem wapnia wpływa niższa alkaliczność żelu. Zakres pH w roztworach krzemianu potasu (od 11,3 do
12,1) czy krzemianu sodu (od 10,8 do 12,8) jest znacznie mniejszy (13,5) odpowiadającej pH roztworu w porach betonu (13,5), a także może być mniejszy od pH (12,45) nasyconego roztworu wodorotlenku wapnia. W związku z tym zol krzemianu sodowo-potasowego utworzony lokalnie w wyniku reakcji z kruszywem może spowodować, że wodorotlenek wapnia będzie w tych obszarach rozpuszczalny ze względu na niższe pH. Jony wapnia mogą dyfundować w kierunku miejsc reakcji [52]. Kawamura i inni [60] tworzenie się strefy o zmniejszonej twardości wokół ziaren opalu wiąże się z równoczesną migracją jonów sodu i potasu, i nieco opóźnionym wnikiem jonów wapnia do reagujących ziaren. W betonach wokół ziaren kruszywa występuje strefa kontaktowa stanowiąca podwójną warstwę wodorotlenku wapnia i żelu C-S-H, i może ona stanowić bezpośrednio źródło jonów wapniowych biorących udział w reakcji [61].

Także Chatterji [62] wysuwa hipotezę wskazującą na równoczesne oddziaływanie jonów wodorotlenowych z ziarnami reaktywnej krzemionki z penetracją do obszarów reakcyjnych większej ilości mniejszych kationów sodu i potasu i mniejszej ilości większych kationów wapnia, natomiast jony krzemiawe dyfundują z obszarów reakcyjnych do roztworu w porach betonu. Stężenie jonów wapnia w roztworze otaczającym ziarno krzemionki ma decydujący wpływ na szybkość dyfuzji jonów krzemiowych od miejsc reakcji i przy wysokich stężeniach jonów wapnia migracja krzemionki jest bardzo ograniczona. Prowadzi to do ekspansji reaktywnego zariarna, gdyż ekspansja jest wynikiem względnej zawartości jonów wymienianych między obszarem reaktywnym a otaczającym roztworem.

Wiele wyników badań świadczy o tym, że obecność reaktywnej krzemionki i wodorotlenków sodu i potasu jest koniecznym, ale niewystarczającym warunkiem aby wystąpiła reakcja niszcząca. Wapń odgrywa ważną rolę w wywoływaniu ekspansji, a jego brak spowoduje, że reakcja może zachodzić bez wystąpienia ekspansji [53]. Ekspansja betonu czy zapraw z reaktywnym kruszywem zwiększa się, gdy zwiększa się także ilość wodorotlenku wapnia uwolnionego przez cement lub dodanego do zaprawy [63]. Podobne zjawisko zostało zanotowane przez Thomasa [14]. Z kolei beton, w którym wystąpiła reakcja alkaliów z krzemionką ma zmniejszoną zawartość wodorotlenku wapnia, co pokazuje, że wodorotlenek wapnia może być zużywany w tej reakcji [64].

Natomiast zmniejszenie zawartości wodorotlenku wapnia albo przez reakcję pucolanową z powstawaniem C-S-H, albo przez karbonatyzację i powstawanie CaCO₃ zapobiega znacznej ekspansji, nawet w obecności reaktywnej krzemionki i wodorotlenków sodu i potasu. Badania zaprawy z popiołem lotnym wykazywały, że przy braku wodorotlenku wapnia reaktywna krzemionka rozpuszcza się w zasadówym roztworze w porach betonu. Prawdopodobnie całkowite usunięcie wodorotlenku wapnia nie jest konieczne, aby reakcja alkaliów z krzemionką nie powodo-

Mechanizm reakcji alkaliów z krzemionką i znaczenie wodorotlenku wapnia w tej reakcji w postaci czterech etapów zaproponowali Wang i Gillot [20], zgodnie ze schematem przedstawionym na rysunku 1.15. Na powierzchni opalu krzem występuje w postaci grup silanolowych. Gdy ziarna opalu znajdą się w roztworze zawierającym jony sodu, potasu i wapnia, na powierzchni krzemionki ma miejsce wymiana protonów w grupach silanolowych na jony sodu, potasu i wapnia. Jony sodu i potasu bezpośrednio wymieniają jony H⁺ i powstaje krzemian sodowo-potasowy, natomiast jony wapnia mogą bezpośrednio podstawiać jony H⁺ z grup silanolowych lub zastępować jony sodu i potasu, które zostały wcześniej zaabsorbowane na powierzchni krzemionki w wyniku czego powstaje żel krzemianu sodowo-potasowo-wapniowego.

![Rys. 1.15a, b. Schemat reakcji jonów sodu i potasu z krzemionką i znaczenie jonów wapnia w tej reakcji [20]](image_url)
c) oddziaływanie wodorotlenków sodu i potasu na mostki tlenowe

\[
\begin{array}{ccc}
\text{Na} & \text{Ca} & \text{K} \\
\text{O} & \text{O} & \text{O} \\
\text{NaOH, KOH} & \text{NaOH, KOH} \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Si} & \text{O} & \text{Si-O-Si} & \text{O} \\
\end{array}
\]

d) dalsza wymiana protonów grup silanolowych na jony sodu i potasu (formowanie pęczniejcego kompleksu alkaliów z krzemionką)

\[
\begin{array}{ccc}
\text{Na} & \text{Ca} & \text{K} \\
\text{O} & \text{O} & \text{O} \\
\text{Si-ONa} & \text{KO-Si-O-Si-ONa} & \text{KO-Si} \\
\end{array}
\]

\[
\begin{array}{cccc}
\text{Si} & \text{O} & \text{Si-O-Si} & \text{O} \\
\end{array}
\]

e) wymiana jonów sodu i potasu na jony wapnia (formowanie nie pęczniejcego kompleksu krzemianu sodowo-potasowo-wapniowego)

\[
\begin{array}{ccc}
\text{Na} & \text{Ca} & \text{K} \\
\text{O} & \text{Ca} & \text{O} \\
\text{Si-O} & \text{KO-Si-O-Si-ONa} & \text{Si} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Si} & \text{O} & \text{Si-O-Si} \\
\end{array}
\]

Rys. 2.15c, d, e. Schemat reakcji jonów sodu i potasu z krzemionką i znaczenie jonów wapnia w tej reakcji [20]
1. Reakcja wodorotlenków sodu i potasu z krzemionką

Początkowo żel ten osiąga największe stężenie jonów sodu, potasu i wapnia w bliskim sąsiedztwie powierzchni krzemionki będącej w bezpośrednim kontakcie z roztworem zawierającym zarówno jony Ca$^{2+}$, jak i sodu, i potasu. W tym etapie krzemian sodowo-potasowo-wapniowy nie powoduje ekspansji. Jony OH$^-$ w roztworze w porach zaczynu cementu portlandzkiego powodują rozrywanie mostków Si–O–Si i tworzenie grup silanolowych. Kolejny etap to wymiana protonów wewnętrznych grup silanolowych na kationy sodu i potasu, dyfundujące do miejsc reakcji. Powstający żel krzemianu sodu i potasu ma duże powinowactwo do wody i w wyniku jej sorpcji pęcznieje, a wytwarza ciśnienie powodujące ekspansję. Z kolei wymiana jąder wapnia o występowaniu niepewniejszego C-K-N-S-H w przypadku większej zawartości Ca$^{2+}$. Proponowane etapy mechanizmu reakcji wodorotlenków sodu i potasu z krzemionką potwierdzają także wyniki uzyskane przez Knudsena i Thaulowa [65].

Z przedstawionych przez Wanga i Gillotta [20] etapów reakcji alkaliów z krzemionką należy się spodziewać zróżnicowanego stężenia jonów wapnia, sodu i potasu w reakcyjnych otoczkach wokół reaktywnych ziaren krzemionki (rys. 1.16). Zawartość jonów wapnia zwiększa się od powierzchni ziarna krzemionki w kierunku zaczynu cementowego, podczas gdy zawartość sodu i potasu jest największa wewnątrz strefy reakcyjnej, zmniejsza się natomiast zarówno w kierunku zaczynu, jak i do wnętrza reagującego ziarna. Dyskutowany powyżej rozkład jonów w strefie reakcji jest potwierdzony przez dane uzyskane przez Poole’a [66], który przy wykorzystaniu mikroanaliz rentgenowskich w mikroobszarach stwierdził, że zawartość sodu i potasu jest największa w żelu wewnętrznej strefie reakcji, a zawartość wapnia jest największa przy zewnętrznych krawędziach ziarna i gwałtownie maleje w kierunku wnętrza reaktywnych otoczek.

Skład chemiczny strefy reakcyjnej, powstałej wokół ziarna krzemionki reakcyjnej pozwala na oszacowanie etapu reakcji. W wielu pracach dotyczących składu otoczki reakcyjnej zawierającego krzemionkę, sód, potas i wapień wykazano [20], co następuje:

- największe stężenie jonów sodu i potasu występuje w środowiskowych obszarze warstwki reakcyjnej i zmniejsza się zarówno w kierunku zaczynu, jak i powierzchni ziarna kruszywa (rys. 1.16);
- ilość jonów wapnia zwiększa się w kierunku zaczynu cementowego, wzrost następuje powoli od ziarna krzemionki, przez warstewkę reakcyjną w kierunku zaczynu;
- ilość krzemionki w żelu zmniejsza się od ziarna kruszywa do zaczynu cementowego.
Korozja wewnętrzna betonu

Rys. 1.16. Rozkład stężeń \((Na + K)\) i \(Ca\) w strefie reakcji [20]

Składy produktów reakcji alkaliów z opalem po 1 dniu, po 1 miesiącu i po 6 miesiącach przedstawiono na wykresie trójkątnym (rys. 1.17).

Rys. 1.17. Skład żelu krzemianowego po różnym czasie reakcji [67]

Żel we wczesnym etapie reakcji jest krzemianem zawierającym sód i potas oraz mało wapnia. W produktach reakcji alkaliów z krzemionką w betonie zawartość składników zmienia się w czasie, zwykle żel wzbogaca się w wapń kosztem otaczającego zaczynu cementowego. Żel krzemianu sodowo-potasowo-wapniowego ma dość dużą zawartość wapnia. Potwierdzają to wyniki wielu badań [68, 69]. W początkowym okresie reakcji występują mikrospekania w strefie kontaktowej. Dopiero w próbkach sześciomiesięcznych obserwuje się występowanie mikrospekania w zaczynie cementowym, rochodzących się od ziaren opalu. Wyniki te pokazują, że we wczesnym stadium reakcji alkaliów z krzemionką, krzemionka rozpuszcza się i tworzący się żel pęcznieje, czemu towarzyszy powstawanie pustek w strefie kontaktowej.
1. Reakcja wodorotlenków sodu i potasu z krzemionką

Przedstawiony na rysunku 1.18 skład chemiczny żelu w kilkuletnim betonie tworzy dwa wyraźne obszary. Żel w ziarnach opalu i w dużych porach ma skład leżący w obszarze A z dużą zawartością sodu i potasu i małą zawartością wapnia, a żel w zacznym cementowym w obszarze B ma dużą zawartość wapnia i małą sodu oraz potasu. Z czasem amorficzny żel włącza więcej wapnia i przekształca się w krzemiany bliższe do C-S-H o większym uporządkowaniu więży, lecz o mniejszej zawartości wapnia w porównaniu z tą fazą. Produkt reakcji w siedmioletnim betonie jest wzbogacony w wapń kosztem krzemionki i ma mniejszą zawartość sodu i potasu.

Rys. 1.18. Diagram trójskładnikowy przedstawiający skład produktów reakcji alkaliów z krzemionką w siedmioletnim betonie [70]

Uważano, że żel bogaty w wapń jest niepękający, jednak nie wszyscy się z tym zgadzają [14, 70]. Thomas [14] zwrócił uwagę na fakt, że pewna ilość wapnia jest konieczna przy powstawaniu żelu; w innym przypadku jony krzemianowe znajdują się w bogatym w sód i potas roztworze. Badania modelowych zapraw metodą NMR wykonane przez Diamonda [71] wykazały, że produkt reakcji w przeważającej części był bliski żelowi C-S-H, co wskazuje na podobieństwo żelowego produktu reakcji do fazy C-S-H. Natomiast krzemionka zanurzona w roztworze KOH bez udziału wodorotlenku wapnia tworzy żel uwodnionego krzemianu potasowego o więźbie mniej uporządkowanej niż struktura żelu powstałego w obecności wodorotlenku wapnia. Powyższe wyniki wydają się być zgodne z poglądem często prezentowanym w najnowszej literaturze, wykazującym, że są co najmniej dwa różne produkty reakcji alkaliów z krzemionką; jedne ze stosunkowo dużą zawartością wapnia i mniejszą zawartością sodu i potasu o małej zdolności pęcznienia i drugie będące pęczniącym żelem złożonym przede wszystkim z potasowego lub sodowego uwodnionego krzemianu z małą tylko zawartością
wapnia. Takie wnioski zawarte są w klasycznej pracy Powersa i Steinoura [6], a nowsze informacje obejmują prace Lianga i innych [67], Drona i Brivota [72] oraz Kurtisa i współautorów [73]. Scrivener i Monteiro [74] odnotowały nawet obecność nie dwóch, ale trzech różnych form żelu: z małą zawartością wapnia i dużą zawartością sodu i potasu; bogaty w wapń żel ale z małą zawartością wody, i trzeci typ – z jeszcze większą zawartością wapnia. Uważa się również, że wpływ zawartości wapnia na pęcznienie żelu nie jest następstwem powstawania odrębnej fazy, ale wynikiem procesu, w którym dwuwartościowy jon wapnia nie uczestniczy w budowie podwójnych warstw odpowiedzialnych za pęcznienie i przez to zmniejsza ich udział [75]. Natomiast Lombardi i współautorzy [76] nie wyróżniają kilku rodzajów żeli, lecz uważają, że żel uwodnionego krzemianu sodowo-potasowego tworzy serię rozróżnialnych faz o zmiennym stosunku CaO do SiO₂, natomiast zawartość sodu i potasu jest związana z uwięzieniem roztworu w betonie w punktach żelu.

Na rysunku 1.19 zamieszczono skład żelu krzemionkowego sodowo-potasowo-wapniowego pobranego z siedmiioletniego betonu laboratoryjnego oraz pięćdziesięcioletniego betonu z tamy, jak również skład fazy C-S-H w betonie z tej tamy [14]. Dane wyrażono jako stosunki atomowe sumy sodu i potasu/krzemu i wapnia/krzemu. Skład żeli obejmuje szeroki zakres, jednak istnieje zależność między zawartością sodu (potasu) i wapnia; zmniejszonej zawartości sodu i potasu w żelu odpowiada zwiększona zawartość wapnia. Powyższe dane popierają pogląd dotyczący zastępowania przez wańyon sodu i potasu w początkowo bogatym w te kationy produkcie reakcji. Ta wymiana następuje podczas przemieszczania się żelu od ziaren kruszywa do zaczynu cementowego bogatego w wapń.

![Rys. 1.19. Skład żelu krzemionkowego w betonie [14]](image-url)
Z danych na rysunku 1.19 wynika, że proces zmiany składu przebiega powoli w czasie i skład produktów reakcji może ostatecznie stawać się podobny do fazy C-S-H. Produkt reakcji alkaliów z krzemionką po długim czasie zawiera bardzo niewiele sodu i potasu, co wskazuje na efekt autokatalityczny. Prawie wszystkie jony sodu i potasu biorące pierwotnie udział w reakcji wzięły powtórnie udział w przekształceniu kolejnych ziaren opalu w uwodniony żel krzemianowy. W pracy Owsiak [77] przedstawiającej wyniki badań mikrostruktury i składu żelu otaczającego ziarno opalu również wykazano zróżnicowanie składu produktu reakcji w zależności od jego położenia, co potwierdza wcześniejsze rozważania.

**Rys. 1.20.** Rozkład pierwiastków w strefie kontaktowej, po 180 dniach, CEM I, 1,1% Na₂O, w cemencie [77]: 1 – typowa faza C-S-H, 2 – rosnąca zawartość potasu, 3 – uwodniony krzemian potasowo-wapniowy.
Inny pogląd na rolę wodorotlenku wapnia w reakcji alkaliów z krzemionką przedstawił Wiecker [45]. Badania ekspansji mieszanki krzemionki amorficznej z krzemianem sodu (kanemitem) oraz wodorotlenkiem wapnia wykazały, że przy wzroście zawartości wodorotlenku wapnia ekspansja zmniejsza się. Wiecker [45] przypuszcza, że jony Ca²⁺ ulegają wymianie jonowej w strukturze krzemianów warstwowych, powstałych wcześniej, i powodują zmniejszanie odległości między ujemnie naładowanymi warstwami krzemo-tlenowymi, w następstwie tego zmniejszają ekspansję.

Rys. 1.21. Ekspansja produktów reakcji mieszanki kanemitu z amorficzną krzemionką przy różnych zawartościach wodorotlenku wapnia o proporcjach molowych odpowiednio 1:2:(0; 0,5; 2; 4) przy wilgotności względnej ~80%, w zależności od czasu reakcji [45]

Obserwacje te potwierdziły Scrivener i Monteiro [78] oraz Owsiak [79] stosując obserwacje pod elektronowym mikroskopem skaningowym oraz mikroanalizy rentgenowskie; w pracach tych stwierdzono, że w pustkach i szczelinach oraz wewnętrz ziarna występuje żel o względnie dużej zawartości potasu i sodu, a małej zawartości wapnia, o składzie podobnym do kanemitu, w którym część sodu i potasu zastąpiły jony wapnia. Natomiast w strefie przejściowej ziarna krzemionki z za-

Rys. 1.20 – mikroanaliza w punkcie 2).

Brouxel [80], badając próbki pobrane z konstrukcji mostowych, wykazał, że ilość wapnia w warstwie reakcyjnej na ziarnie kruszywa krzemionkowego jest większa od zawartości sodu i potasu, a strefa reakcyjna jest zełem krzemianu so-

dowo-potasowo-wapniowego. Największa zawartość alkaliów występuje w żelu
1. Reakcja wodorotlenków sodu i potasu z krzemionką

zawierającym od 40 do 50% SiO₂. Obszar reakcji wokół ziarna kruszywa Brouxel [80] dzieli na trzy strefy. W strefie najbliższej powierzchni ziarna kruszywa, o grubości 100 µm, występuje w żelu zmniejszenie stosunku SiO₂ do CaO z wartości 100 do 1. W dalszej strefie obserwuje się zwiększenie zawartości sodu i potasu, natomiast w trzeciej strefie, w odległości większej od 100 µm, zmniejsza się zawartość SiO₂ i alkaliów a zwiększa zawartość wapnia, przyjmując wartości stosunku SiO₂/CaO typowe dla zaczynu cementowego.

Rivard i współautorzy [81] wykazali, że w przypadku opalu, warstewka reakcyjna znajduje się wewnątrz ziarna kruszywa, a nie wokół niego. Zawartość alkaliów i wapnia wzrasta wraz z postępem reakcji, a zmiany te wynikają z kilkuetapowego przebiegu reakcji. Początkowo następuje szybka migracja jonów sodu, potasu, wapnia i jonów hydroksylowych poprzez mikroporę i pory kapilarne do ziarna kruszywa, co skutkuje rozpuszczaniem reaktywnej krzemionki. W dalszym etapie ma miejsce powstawanie żelu w ziarnie kruszywa i w strefie kontaktowej z zaczynem cementowym. Dyfuzja jonów wapnia, sodu i potasu przez warstwę reakcyjną do krzemionki powoduje jego pęcznienie.

Rola wapnia w reakcji alkaliów z krzemionką pozostaje nadal niejasna i ciągle jest dyskutowana. W celu wyjaśnienia roli wapnia zaproponowano następujące hipotezy:

- wapń może zastępować sód i potas w żelu i w ten sposób uwalnia te jony, które mogą ponownie reagować z krzemionką [3, 7, 14];
- Ca(OH)₂ stanowi przede wszystkim źródło jonów OH⁻ [20];
- wysokie stężenie jonów wapnia w roztworze w porach betonu zapobiega dyfuzji krzemionki z reagujących ziaren kruszywa do roztworu [60, 61];
- przy braku jonów wapniowych reaktywna krzemionka rozpuszcza się w roztworze wodorotlenków sodu i potasu w fazie ciekłej czemu nie towarzyszy pęcznienie [21, 82];
- powstawanie żeli bogatych w wapń jest konieczne do wystąpienia ekspansji albo bezpośrednio, albo przez utworzenie półprzepuszczalnej błony wokół reaktywnych ziaren kruszywa [80, 81].

Przedstawione wyniki badań świadczą o tym, że wodorotlenek wapnia w reakcji alkaliów z kruszywem odgrywa znaczącą rolę, gdyż wpływa na skład żelu i jego lękliwość oraz zdolność do ekspansji. Pomimo że rola Ca(OH)₂ nie jest jednoznaczna, to dla reakcji alkaliów z krzemionką skutkującej destrukcją betonu obecność wapnia jest konieczna. Ograniczenie dostępności wapnia, na przykład w następnym etapie reakcji pucolanowej, powinno spowodować zmniejszenie ekspansji wywołanej reakcją sodu i potasu z krzemionką. Thomas [14] uważa, że ekspansja zapraw i betonów z reaktywnym kruszywem może być zmniejszona w przypadku związku wodorotlenku wapnia w węglan w wyniku karbonatyzacji.
Literatura


1. Reakcja wodorotlenków sodu i potasu z krzemionką


[82] Chatterji S., *The Role of Ca(OH)_2 in the Breakdown of Portland Cement Concrete due to Alkali-Silica Reaction*, CCR, 9(2), 1979, pp. 185-188.
Rozdział 2

Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Czynnikami warunkującymi wystąpienie reakcji alkaliów z krzemionką w betonie są:
- zawartość w cemencie alkaliów (całkowitych, rozpuszczalnych w wodzie, a więc aktywnych),
- odpowiednia zawartość alkaliów w roztworze w porach zaczynu, pochodzących z cementu, kruszywa, dodatków mineralnych, domieszek,
- rodzaj, uziarnienie i ilość kruszywa reaktywnego,
- wilgotność (współczynnik w/c lub źródło zewnętrzne wody),
- temperatura w trakcie reakcji alkaliów z kruszywem.

Schemat przedstawiający warunki dla wystąpienia tej reakcji przedstawiono na rysunku 2.1.

Rys. 2.1. Schemat przedstawiający warunki dla wystąpienia reakcji wodorotlenków sodu i potasu z krzemionką
Z dyskusji na temat mechanizmów reakcji i ekspansji wynika, że do rozpoczęcia i kontynuowania reakcji jonów sodu i potasu z kruszywem w betonie niezbędne są trzy warunki: kruszywo zawiera dostateczną ilość krzemionki, stężenie wodorotlenków sodu i potasu w roztworze w porach betonu jest wystarczające oraz wilgotność betonu jest odpowiednia. Brak któregoś z tych czynników zapobiega występowaniu szkodliwej reakcji alkaliów z krzemionką.

2.1. Rodzaje kruszyw

2.1.1. Kruszywo krzemionkowe

Reakcja alkaliów z kruszywem zachodzi w roztworze w porach betonu z pewnymi rodzajami kruszyw, prowadząc do ekspansji betonu, która może powodować jego pękanie i destrukcję. Najbardziej powszechną formą reakcji jest reakcja z kruszywami zawierającymi krzemionkę reaktywną, głównie opalową i szkło krzemionkowe. Zanotowano także reaktywny charakter innych rodzajów kruszyw, do których należą gneisy i łupki zawierające miki.

Najczęściej reaktywnymi minerałami w kruszywach stosowanych do wytwarzania konstrukcji betonowych są różne postacie krzemionki, takie jak: opal (różne jego odmiany), chalcedon (włóknisty lub kryptokrystaliczny), trydymit (krystaliczny), także kwarc w stanie naprężu, który może wchodzić w reakcję z alkaliami. Te reaktywne minerały występują w rogowcach opalowych i chalcedonitowych, zsylifikowanych wapieniach, riolitach i tufach riolitowych, dacytach, andezytach.

Opal występuje głównie w skałach osadowych, czasami może być najbardziej reaktywnym minerałem nawet w bazaltach. Minerale, takie jak kwarc, skalenie i krzemiany wykazują tę większą reaktywność, im mają bardziej nieuporządkowaną strukturę. Zdeformowana struktura minerałów związana jest z naprężeniami powstałymi na skutek ruchów tektonicznych, które spowodowały zdeformowanie struktury krystalicznej. Przykładem jest kwarc o zdeformowanej strukturze krystalicznej, wykazujący w obserwacjach mikroskopowych, w świetle spolaryzowanym faliste wygaszanie światła. Kwarc taki często występuje w skałach metamorficznych, gnejsach i łupkach mikowych oraz w niektórych skałach magmowych, np. w granitach. Zawartość ponad 30% kwarcu w stanie naprężu, wykazującego kąt falistego wygaszania 25° lub większy, uznaje się za składnik reaktywny w granitach, gnejsach i granodiorytach [1]. Istnieniu również dowody reaktywności kruszyw zawierających tylko 20% kwarcu w stanie naprężu z kątem falistego wygaszania większym niż 15°. Dlatego wyniki badań petrograficznych mogą być niewystarczające, aby określić szkodliwą zawartość kwarcu w stanie naprężu.

Deformacje struktury mogą być związane także z przeobrażeniami chemicznymi. Tak jest w przypadku kwarcu w niektórych skałach magmowych, osadowych
(piaskowcach), jak również w skałach metamorficznych (kwarcytach). Kwaśne skały magmowe, przeobrażone, poddane naprężeniom w wyniku ruchów tektonicznych są bardziej podatne na reakcję z wodorotlenkami sodu i potasu w porównaniu ze skalami pierwotnymi. Ma to również miejsce w przypadku skaleni alkalicznych, które mają większą reaktywność z sodem i potasem po znacznych przeobrażeniach. O przeobrażeniach skaleni świadczą minerały ilaste rozmieszczone wzdłuż płaszczyzn łupliwości. Skalenie i minerały z grupy mik w środowisku rozwo- toru w porach betonu uwalniają sól i potas, zwiększając ich stężenie w roztworze, a pozostała krzemionka może uczestniczyć w tworzeniu żelu.

W reakcji alkaliów z kruszywem biorą udział minerały zawarte w skałach, a ich reaktywność jest częściowo zależna od formacji skalnej. Istnieją dwa kategorie czynników zależnych od skały: jej tekstura i rodzaje tworzących ją składników. Najłatwiej rozpoznawalnym parametrem tekstury skały jest wielkość ziarna. Ogólnie uważa się, że skały gruboziarniste, których wielkość ziarna jest mierzona w milimetrach, są o wiele bardziej reaktywnie niż skały bardzo drobnoziarniste. Gruboziarnistej mikrostrukturze skały często towarzyszą znaczne spękania, stąd konieczność określenia parametrów fizycznych kruszywa, takich jak przepuszczalność, porowatość i powierzchnia właściwa.

Skład skały obejmuje rodzaj minerałów w niej obecnych oraz ich względne zawartości i rodzaj spoiwa skalnego. Krystaliczny czy litograficzny wapień, który jest zwykle obojętny, może stać się reaktywny, jeśli zawiera minerały ilaste lub krzemionkę rozproszone w matrycy. Reaktywność będzie nieznaczna, w przypadku mikrokrzemionki oraz bardzo wysoka z amorficzną krzemionką.

Krzemionka SiO₂ jest składnikiem chemicznym wielu skał. Jednak nie wszystkie odmiany krzemionki wchodzą w reakcję z roztworem porowym w betonie, a zatem nie wszystkie kruszywa krzemionkowe wytwarzają produkty reakcji alkaliów z krzemionką, niszące konstrukcje betonowe. Przykładem są dwa minerały krzemionkowe o podobnym składzie chemicznym, składające się głównie z SiO₂: kwarc, który jest minerałem trwałym oraz opal, który jest wysoce reaktywny w środowisku betonu. Różnice w rozpuszczalności krzemionki i strukturze krystalicznej oraz więźbie tych dwóch minerałów pokazano na rysunku 2.2. Opal ma bardzo nieuporzàdkowaną więźbę, co powoduje jego brak trwałości przy wysokim pH. Kruszywo zawierające znaczne ilości opalu będzie prawdopodobnie reaktywne i będzie powodować ekspansję betonu, przy wystarczającym stężeniu wodorotlenków sodu i potasu w roztworze w porach betonu. Natomiast kwarc niezależnie od zawartości alkaliów w betonie nie powoduje reakcji prowadzącej do uszkodzenia betonu.
Korozja wewnętrzna betonu

Rys. 2.2. Porównanie więży opalu i struktury kwarcu oraz ich rozpuszczalności w roztworze wodorotlenku sodu [2]

Za reaktywne w obecności alkaliów uważane są następujące minerały i skały krzemionkowe: opal, trydymit, krystobalit, szkło wulkaniczne, rogowce, kryptokrystaliczny (lub mikrokystaliczny) kwarc i kwarc w stanie naprężu. Skały te występują w takich skałach, jak: łupki, piaskowce, zsylifikowane skały węglanowe, rogowce, krzemienie, kwarcyty, piaskowce, gneisy, granity, pływowce, arkopy i hornfelsy. Jednak to nie oznacza, że kruszywo z tych skał ze wszystkich złoż stosowane w betonie, spowoduje szkodliwą reakcję. Jako przykład można podać kruszywo granitowe bardzo szeroko stosowane w betonie, lecz szkodliwą reakcję może powodować tylko z niektórych złoż. Reaktywność skały zależy od rodzaju i ilości występujących w niej minerałów reaktywnych.

Wszystkie minerały krzemianowe czy krzemionkowe obecne w kruszywach reaktywnych mogą reagować z roztworem wodorotlenków sodu i potasu z szybkością zależną od czasu, temperatury i rozmiaru ziaren, chociaż wiele minerałów reaguje tylko w nieznacznym stopniu. Skalenie, pirokseny, amfibole, miki i kwarc, które wchodzą w skład granitów, gneisów, piaskowców, łupków i bazaltów są klasyfikowane jako minerały niereaktywne. Opal, obsyedian, krystobalit, trydymit, chalcedon, rogowiec, kryptokrystaliczne skały wulkaniczne (andezyt i riolit) i kwarc pochodzenia metamorficznego w stanie naprężu uważane są za składniki reaktywne. Zestawienie składników reaktywnych, ich skład chemiczny i właściwości fizyczne podano w tablicy 2.1.
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Tablica 2.1. Składniki reaktywne kruszyw [3]

<table>
<thead>
<tr>
<th>Rodzaj mineralu lub skały</th>
<th>Skład chemiczny</th>
<th>Stopień wykrystalizowania</th>
</tr>
</thead>
<tbody>
<tr>
<td>opal</td>
<td>SiO₂ · n H₂O</td>
<td>amorficzny</td>
</tr>
<tr>
<td>chalcedon</td>
<td>SiO₂</td>
<td>mikrokrystaliczny do kryptokrystalicznego, zwykle włóknisty</td>
</tr>
<tr>
<td>pewne odmiany kwarcu</td>
<td>SiO₂</td>
<td>mikrokrystaliczny do kry stalicznego; w stanie naprężen, z wrostkami</td>
</tr>
<tr>
<td>cristobalit</td>
<td>SiO₂</td>
<td>krystaliczny, odmiana wysokotemperaturowa</td>
</tr>
<tr>
<td>trydymit</td>
<td>SiO₂</td>
<td>krystaliczny, odmiana wysokotemperaturowa</td>
</tr>
<tr>
<td>riolit, dacyt, szkło andezytowe czy kryp tokrystaliczne produkty dewitrykacji</td>
<td>krzemiany z mniejszą zawartością Al₂O₃, Fe₂O₃, sodu, potasu</td>
<td>szkło lub kryp tokrystaliczny składnik skał wulkanicznych lub tułów</td>
</tr>
<tr>
<td>syntetyczne szkło krzemionkowe</td>
<td>szkło krzemionkowe z mniejszym udziałem alkaliów, glinu</td>
<td>szkło</td>
</tr>
</tbody>
</table>

Natomiast skały reaktywne, które zastosowane w betonie mogą być przyczyną destrukcji, to skały zawierające w odpowiednich ilościach jeden lub więcej składników reaktywnych. Do skał tych należą: rogowiec opalowy, rogowiec chalcedonitowy, rogowiec bogate w kwarc, zsylikowane wapienie, riolity, dacity, andezyty, zsylikowane łupki, fylity, konkrecje opalowe, kwarc w stanie naprężenia, wrostki krzemionki amorficznej w kwarcu i kwarcytach.

Poniżej zamieszczono charakterystykę petrograficzną oraz wyniki badań reaktywności metodą chemiczną opalu jako składnika wielu reaktywnych kruszyw. Dyfraktogram kruszywa opalowego, przedstawiony na rysunku 2.3 wskazuje na obecność trydymitu, cristobalitu i kwarcu. Podniesione tło w zakresie niskich kątów 2θ oraz w zakresie od 18 do 25°, jak również duża szerokość pików świadczą o występowaniu krzemionki w postaci amorficznej lub drobnokrystalicznej.

Opal jest koloidalną krzemionką o zmiennej zawartości wody (do 21% mas.), w stanie metatrwałym, który często ulega przemianie w chalcedon. Ogólnie opałami określana się zarówno amorficzne formy krzemionki (opal-A), jak i formy o mniej lub bardziej uporządkowanej strukturze niskotemperaturowego cristobalitu i trydymitu (opal-CT) [5, 6]. Analiza petrograficzna ziaren opalu wskazała, że podstawowym składnikiem skały jest opal krystalitowo-trydymitowy – opal CT. Pomiędzy stre-
fami zbudowanymi z opalu występują węższe strefy zbudowane z krystalicznego chalcedonu właściwego. Niewielkie przestrzenie pomiędzy strefami chalcedonowymi zблиżone są przez drobnokrystaliczny kwarc. Obraz mikroskopowy opalu CT przedstawiono na rysunku 2.4. Badania wykonano w świetle przechodzącym w standardowych preparatach mikroskopowych o wymiarach 35 x 20 mm.

**Rys. 2.3.** Dyfraktogram opalu wykazujący obecność różnych jego odmian [4]

**Rys. 2.4.** Krystals kwarcu pomiędzy wachlarzowatymi agregatami włóknistego chalcedonu i niemal izotropowy opal (ciemnoszara barwa interferencyjna), polaryzatory X
Dominującym składnikiem w skałę jest opal (65% obj.), następnie chalcedon (około 30% obj.), kwarc stanowi około 2% obj. oraz niewielki udział objętościowy stanowią wodorotlenek żelaza oraz tałk. Aby potwierdzić reaktywność ziaren opalu z alkaliами wykonano badania potencjalnej reaktywności kruszywa metodą chemiczną, zgodnie z metodyką zawartą w normie ASTM C289 [7]. Badanie zmniejszenia zasadowości uzyskanego przez przesuł metodą miareczkowania 0,05 M roztworem HCl wykazało spadek alkaliczności równy 310 mmol/litr, natomiast ilość rozpuszczonej krzemionki, określona metodą wagową wynosiła 87 mmol/litr. Uzyskane wyniki przedstawiono na rysunku 2.5.

Rys. 2.5. Reaktywność kruszywa opalowego według ASTM C289

W związku ze stwierdzeniem występowania reaktywnych składników mineralnych w kruszywie oznaczonych metodą petrograficzną oraz potwierdzeniem reaktywności kruszywa z alkaliами metodą chemiczną, w celu oceny reaktywności opalu zastosowano badania zapraw metodą przyspieszoną (według ASTM C1260) [8] oraz długoterminową (według ASTM C227) [9]. Uzyskane wielkości wydłużenia beleczek zapraw zamieszczone w tablicy 2.2 wskazywały na wysoką reaktywność opalu.

Tablica 2.2. Wielkość ekspansji zapraw z kruszywem opalowym badanych według ASTM C1260 oraz ASTM C227

<table>
<thead>
<tr>
<th>Norma</th>
<th>Kryterium reaktywności kruszywa</th>
<th>Ekspansja próbek zapraw [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C1260</td>
<td>Ekspansja po 14 dniach &gt; 0,20%</td>
<td>0,81</td>
</tr>
<tr>
<td>ASTM C227</td>
<td>Ekspansja do 90 dni &gt; 0,5% lub po 90 dniach &gt; 1,0</td>
<td>od 0,17 do 90 dnia</td>
</tr>
</tbody>
</table>
W wielu rejonach świata różne formy krzemionki reagowały z wodorotlenkami sodu i potasu. W szczególności była to mikrokrystaliczna i kryptokrystaliczna krzemionka, często występująca w krzemieniach i rogocicach oraz kwarc w stanie naprężeń, występujący w niektórych kwarcytach. Najbardziej reaktywną formą jest krzemionka opalowa. Reaktywne formy krzemionki mogą występować również w granitach, zsylikowanych wapieniach itp. Rodzaje skał uznawanych w różnych krajach jako reaktywne zestawiono w tablicy 2.3.

**Tablica 2.3. Zestawienie mineralów i skał, które mogą reagować z wodorotlenkami sodu i potasu z w betonie**

### MINERAŁY

opal, chalcedon, trydymit, cristobalit, kryptokrystaliczny, mikrokrystaliczny kwarc, gruboziąrzynisty kwarc w stanie naprężeń lub zawierający submikroskopowe wtrącenia, najczęściej illitu, krzemionkowe szkło wulkaniczne

### SKAŁY

<table>
<thead>
<tr>
<th>Rodzaj skały</th>
<th>Reaktywne składniki</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Skal magmowe</strong></td>
<td></td>
</tr>
<tr>
<td>granity, granodiority</td>
<td>zawierające więcej niż 30% kwarcu w stanie naprężeń, charakteryzującego się falistym kątem wygazania 25° lub większym</td>
</tr>
<tr>
<td>pumeks, ryolity, andezity, dacity, latyty, perlit, obsydian, tufy wulkaniczne</td>
<td>krzemowy do pośredniej krzemionki bogatej w szkło wulkaniczne; rekryystalizowane szkło; trydymit</td>
</tr>
<tr>
<td>bazalty</td>
<td>chalcedon; cristobalit; podstawowe szkło wulkaniczne</td>
</tr>
<tr>
<td><strong>Skal metamorficzne</strong></td>
<td></td>
</tr>
<tr>
<td>gnejsy, łupki</td>
<td>zawierające więcej niż 30% kwarcu w stanie naprężeń, charakteryzującego się falistym kątem wygazania 25° lub więcej</td>
</tr>
<tr>
<td>kwarczyty</td>
<td>kwarc w stanie naprężeń, jak wyżej; 5 lub więcej procent rogowca, opalu</td>
</tr>
<tr>
<td>hornfelsy, fylity, skały ilaste</td>
<td>kwarc w stanie naprężeń, jak wyżej; kwarc mikrokrystaliczny do skrytokrystalicznego</td>
</tr>
<tr>
<td><strong>Skal osadowe</strong></td>
<td></td>
</tr>
<tr>
<td>piaskowce</td>
<td>kwarc w stanie naprężeń, jak wyżej; 5 lub więcej procent rogowca, opalu</td>
</tr>
</tbody>
</table>
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

cd. tablicy 2.3

<table>
<thead>
<tr>
<th>Skały osadowe</th>
</tr>
</thead>
<tbody>
<tr>
<td>szarogłazy</td>
</tr>
<tr>
<td>mułowce, łupki</td>
</tr>
<tr>
<td>morena polodowcowa*</td>
</tr>
<tr>
<td>rogowiec, krzemień</td>
</tr>
<tr>
<td>ziemia okrzemkowa</td>
</tr>
<tr>
<td>ilaste wapienie dolomityczne</td>
</tr>
<tr>
<td>ilaste dolomity wapniste</td>
</tr>
<tr>
<td>kwarc w ilastych dolomitach wapnistych</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inne substancje</th>
</tr>
</thead>
<tbody>
<tr>
<td>szkło syntetyczne, żel krzemionkowy</td>
</tr>
</tbody>
</table>

* jako nagromadzenie okruchów różnych skał

W wielu pracach odnotowano wpływ wielkości ziaren kruszywa na jego reaktywność z wodorotlenkami sodu i potasu. Stwierdzono uszkodzenia spowodowane tą reakcją, zarówno przy zastosowaniu kruszyw grubych, jak i drobnych. W wielu przypadkach, zwłaszcza w piaskach opałowych, uszkodzenia były wynikiem reakcji grubszych frakcji drobnego kruszywa, czyli ziaren w zakresie wielkości od 2 do 5 mm [10]. Trzeba jednak podkreślić, że różne autorzy podają bardzo rozbieżne wyniki. Na przykład Taylor [33] cytuje prace Hobbsa [12], który określa uziarnienie kruszywa reaktywnego od 0,1 do 1 mm. Badano wpływ wielkości ziaren kruszywa na przebieg reakcji z alkaliami dla frakcji o różnym uziarnieniu. Prace doswiadczenialne były głównie prowadzone na zaprawach, co obejmowało stosunkowo wąski zakres wielkości ziaren kruszywa.

2-4 mm [15]. Zhang i współpracownicy [16] badali wpływ dużych ziaren kruszywa reakcyjnego w mieszanice betonowej. Stwierdzili, że w zależności od reaktywności kruszywa wielkość ziaren kruszywa może powodować zmnieszenie lub zwiększenie ekspansji. Potwierdziło to wcześniejsze wyniki badań Frencha [17], który stwierdził, że najbardziej szkodliwą frakcją z uwagi na możliwość wystąpienia ekspansji są ziarna wielkości 4-10 mm. Stwierdzono, że obecność dużych ziaren zmniejsza ekspansję we wcześnieym etapie i zwiększa ją później. Stąd według norweskich zaleceń [18], wielkość ekspansji zaprawy z dużymi ziarnami kruszywa w badaniach przyspieszonych mnoży się przez współczynnik większy od jedności, dla uwzględnienia zwiększenia potencjału ekspansji w późniejszym czasie dojrzewania.

Wiggum i współautorzy [19] jako pierwsi uwzględnili rolę rozdrobnienia przez porównanie powierzchni właściwej modelowych kruszyw reakcyjnych. Jednak analiza wyników przyspieszonych badań wykazała, że różnice ilości składników reaktywnych w każdej klasie uziarnienia mają stosunkowo niewielki wpływ na całkowitą ekspansję kruszywa [20]. Obserwacja ta jest niezgodna z teorią, że reakcja alkaliów z krzemionką powoduje się głównie na powierzchni kruszywa, a różnica powierzchni dla różnej wielkości ziaren kruszywa w kontakcie z zaczynem jest znacząca. Multon [21] zaproponował model tej reakcji, badając ekspansję oddzielnie dla poszczególnych frakcji kruszywa, przy założeniu, że kruszywa reagują na powierzchni, a ocena różnej reaktywności kruszywa wynika z sumarycznej powierzchni dla każdej klasy uziarnienia. Reinhardt i Mielich [22] obliczyli krytyczną długość rysy dla uszkodzenia kruszywa, która jest zależna od wielkości ziarna, ale nie uwzględnili tworzenia sieci pęknięć w kruszywie.

Obserwowany wpływ uziarnienia kruszywa na wielkość ekspansji towarzyszącej reakcji alkaliów z krzemionką może być spowodowany następującymi przyczynami:

- różnicą reaktywnością i podatnością na pękanie wykazywaną przez kruszywa o różnym składzie mineralnym i o różnej wielkości ziaren. Natomiast na reaktywność kruszyw o tym samym składzie mineralnym mają wpływ wielkości ziaren;
- proces dyfuzji jonów sodu i potasu lub cząsteczek wody do nieprzereagowanych rdzeni większych ziaren kruszywa jest czynnikiem decydującym o szybkości reakcji;
- czynnikiem dominującym jest pękanie, przy czym wpływ sił wywieranych przez kruszywa na zaczyn i sąsiednie ziarna, powoduje powstawanie różnej długości pęknięć w ziarnach, zależnych od ich wielkości [19].

Wszystkie te czynniki nie muszą się wzajemnie wykluczać i mogą występować jednocześnie. Uważa się, że ekspansja betonu wywołana reakcją alkaliów z krzemionką wynika z trzech różnych przyczyn. Po pierwsze, ekspansję powoduje pę-
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

kanie ziaren przy braku sprężystego odkształcenia zaczynu. Po drugie, pękanie zarówno kruszywa, jak i zaczynu prowadzi do propagacji rys i dalszej ekspansji. Słabo reagujące kruszywa w badaniach laboratoryjnych wykazują zazwyczaj małą ekspansję, gdy występuje tylko pękanie ziaren, a kruszywa bardzo reaktywne – wręcz przeciwnie – wykazują brak pękania ziaren, a przebieg ekspansji zależy głównie od mechanicznych właściwości zaczynu cementowego.

W starszych badaniach Stanton [13] wykazał, że wielkość ziaren kruszywa reaktywnego może mieć znaczy wpływ na wielkość ekspansji zaprawy. Ekspansję bełeczek zaprawy zawierającej reaktywny zsylifikowany dolomit wapnisty, podzielony na różne frakcje zjawowe przedstawiono na rysunku 2.6. Ekspansja po tym samym okresie była większa w przypadku zapraw z frakcji kruszywa 0,18-0,6 mm niż frakcji o większych ziarnach (0,6-2,0 mm i 2,0-6,7 mm), zwłaszcza w początkowym okresie, co można przypisać większej powierzchni i zwiększonej dostępności reaktywnej krzemionki. Zabobierwowano, że bełeczki zaprawy z reaktywnego kruszywa o ziarnach mniejszych niż 180 µm nie wykazały szkodliwej reakcji.

stonował Stanton [13] poniżej 70 µm powodowało opóźnienie ekspansji, a poniżej 50 µm eliminowało ekspansję. Obecnie wiadomo, potwierdziły również to liczne badania laboratoryjne, że dostatecznie rozdrobniona krzemionka reaktywna jest pucolaną i może wyeliminować ekspansję zaprawy lub betonu [24-26]. Jin i współautorzy [26] uważają, że wielkość pessimum ze względu na uziarnienie różnych frakcji, powodującego największą ekspansję zaprawy, zmniejsza się przy zwiększeniu reaktywności szkła. Rozdrobnione reaktywne kruszywo jako składnik zapobiegający reakcji alka-liów z krzemionką zostało zastosowane w Islandii, gdzie 9% zmielonego ryolitu zastosowanego jako dodatek mineralny do cementu zapobiegło nadmiernej ekspansji z reaktywnym kruszywem riolitowym [27].

Wyniki badań laboratoryjnych pozwoliły na sformułowanie wniosków dotyczących wpływu rozmiaru ziaren i ilości kruszywa na trwałość betonu zagrożonego reakcją alkaliów z krzemionką oraz na określenie współczynników korelacji wyników badań laboratoryjnych z zachowaniem się konstrukcji betonowej podczas eksploatacji.

Stanton [13] zaobserwował, że ekspansja nie zawsze wiąże się z zwiększeniem zawartości reaktywnego kruszywa. Na rysunku 2.6b pokazano ekspansję bełeczek zaprawy dojrzewających w wodzie, w zależności od zawartości reaktywnego kruszywa, w tym przypadku zsyliifikowanego wapienia dolomitycznego.

Maksymalna ekspansja wystąpiła gdy zawartość kruszywa reaktywnego wynosiła 20%, a ekspansja zmniejszała się ze zwiększeniem jego ilości w stosie okruchowym. Natomiast znane jest zjawisko opisane przez Hobbsa [12] i nazywane efektem „pessimum”, przedstawiające udział kruszywa reaktywnego, powodującego maksymalną ekspansję w odniesieniu do całkowitej zawartości kruszywa. Odpowiadająca „pessimum” zawartość może się zmieniać w szerokim zakresie od około 3,5% dla bardzo reaktywnych kruszyw jak opal, aż do 10 lub 20% w przypadku mineralów mniej reaktywnych. Należy podkreślić, że nie wszystkie rodzaje kruszyw wykazują efekt „pessimum”. Przy małej zawartości reaktywnej krzemionki w całkowitej ilości kruszywa, nie utworzy się w wyniku reakcji z wodorotlenkami sodu i potasu dostateczną ilość żelu mogąca spowodować późniejszą ekspansję. Z drugiej strony podczas wiazania i twardnienia betonu, jeśli udział reaktywnej krzemionki jest duży, a stężenie jonów sodu i potasu w roztworze w porach betonu jest niewielkie, poniżej poziomu progowego, to mała objętość utworzonego żelu nie powoduje szkodliwej ekspansji. Pomimo tymi skrajnymi zawartościami może mieścić się krytyczna ilość reaktywnej krzemionki, przy której zachodzi maksymalne pęcznienie betonu nazwane efektem „pessimum”. Zawartość reaktywnego kruszywa, przy której występuje „pessimum” zależy od rodzaju reaktywnej krzemionki i od składu mieszanki betonowej (zawartości wody zarobowej i zawartości alkaliów).
Krzywe zależności ekspansji od zawartości reaktywnej krzemionki, w przypadku minerałów o dużej reaktywności, takich jak opal, mogą wykazywać wyraźne maksimum. Mniej reaktywne minerały wykazują bardziej płaski przebieg krzywych, a czasem „pessimum” w ogóle nie występuje. Ze względu na trudności w określeniu zawartości reaktywnej krzemionki występującej we wtręceniach w matrycy złożo skalnego są problemy z wykorzystaniem „pessimum” jako metody zapewnienia mniejszego pęcznienia spowodowanego reakcją alkaliów z kruszywem. Niektóre odmiany krzemienia lub rogowca nie powodują szkodliwej ekspansji, gdy stanowią jednoskładnikowe kruszywo, natomiast zastosowane równocześnie z wapieniem lub grubym kruszywem granitowym w podobnym betonie mogą spowodować ekspansję. Może to być prawdopodobnie wynikiem obniżenia całkowitej zawartości reaktywnych składników do poziomu odpowiadającego „pessimum” dla reaktywnego kruszywa, na przykład rogowca.

Przedstawiony na rysunku 2.7a przebieg ekspansji zapraw z sześcioma rodzajami kruszyw, zawierającymi opal pokazuje zawartość tego reaktywnego składnika, odpowiadającą pessimum, a na rysunku 2.7b przedstawiono cztery obszary zachowania kruszyw opisane w tablicy 2.4 [12].

*Rys. 2.7. Przebieg ekspansji zapraw z kruszywami zawierającymi opal (a), cztery obszary zachowania kruszyw (b) [12]*
Tablica 2.4. Opis czterech obszarów wydzielonych na rysunku 2.7b zależności ekspansji od zawartości „pessimum” kruszywa [12]

<table>
<thead>
<tr>
<th>Obszar</th>
<th>Efekt</th>
<th>Wyjaśnienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>reakcja występuje, brak rys</td>
<td>tworzenie niewystarczającej ilości żelu dla wywołania ekspansji</td>
</tr>
<tr>
<td>B</td>
<td>reakcja występuje, pękanie – nadmiar alkaliów</td>
<td>ekspansja trwa aż do całkowitego wyczerpania się reaktywnej krzemionki. Skład żelu prawdopodobnie niezależny od stosunku alkalia / reaktywna krzemionka</td>
</tr>
<tr>
<td>C</td>
<td>reakcja występuje, pękanie – nadmiar reaktywnej krzemionki</td>
<td>ekspansja trwa do zmniejszenia stężenia jonów sodu i potasu do poziomu niewystarczającego dla podtrzymywania reakcji. Stosunek alkalia/krzemionka i zdolność pęcznienia żelu maleje wraz ze wzrostem zawartości krzemionki</td>
</tr>
<tr>
<td>D</td>
<td>reakcja występuje, ale brak rys</td>
<td>bardzo duża zawartość reaktywnej krzemionki, reakcja przebiega szybko, więc żel tworzy się przed stwardnieniem betonu i nie ma żadnych uszkodzeń. Obserwuje się dużą ilość żelu.</td>
</tr>
</tbody>
</table>

Hipoteza Hobbsa [12] opiera się na dwóch założeniach. Po pierwsze, zakłada on, że gdy stosunek reaktywnej krzemionki do alkaliów (SiO₂/Na₂Oe) w układzie wzrośnie powyżej pessimum, utworzony żel ma mniejszy stosunek alkaliów do krzemionki (Na₂Oe/SiO₂), co zmniejsza absorpcję wody, a tym samym zmniejsza zdolność żelu do pęcznienia. Po drugie, przypuszcza się, że gdy zawartość reaktywnej krzemionki jest bardzo duża, żel tworzy się szybko, zanim beton stwardnieje. Podczas szybkiego powstawania żelu, wiązane są jony sodu i potasu, a powstająca niewystarczająca zawartość żelu po stwardnieniu betonu, nie powoduje jego ekspansji. Dent Glasser i Kataoka [28] wykazali, że ilość krzemionki rozpuszczonej zależy od stosunku krzemu do alkaliów (SiO₂/Na₂Oe). Jak podano wcześniej, w układzie reaktywna krzemionka i wodorotlenki sodu i potasu, stężenie krzemionki w roztworze zwiększa się, aż do równowagowej odpowiadającej krzywej rozpuszczalności (SiO₂-pH). Jeśli zawartość krzemionki jest mała, stężenie krzemionki zwiększa się, aż do jej całkowitego rozpuszczenia, jednak nie osiąga maksymalnego nasycenia. Jeśli zawartość krzemionki jest bardzo duża, to wzrasta jej stężenie, aż do osiągnięcia rozpuszczalności równowagowej, a nadmiar krzemionki pozostający w fazie stałej wiąże jony hydroksylowe (OH⁻), zmniejszając ich stężenie w roztworze, co zmniejsza pH. Pociąga to za sobą zmniejszenie stężenia krzemionki w roztworze. W konsekwencji nie jest osiągnięty optymalny stosunek krzemionki do alkaliów (SiO₂/Na₂Oe) po rozpuszczeniu się całej zawartości krzemionki.
Wpływ zawartości reaktywnej krzemionki w kruszywie odpowiadający „pessimum” na ekspansję jest obserwowany również w badaniach bełeczek zaprawy, przy zastosowaniu metody przyspieszonej [29]. W tej metodzie bełecze zaprawy są zanurzone w 1 M NaOH, w temperaturze 80°C. Ekspansja nie występuje w badaniu niektórych kruszyw, jeśli ilość reaktywnej krzemionki jest powyżej poziomu „pessimum”. Trudno jest wyjaśnić to zjawisko występowaniem nadmiaru dwutlenku krzemu (to jest zbyt wysokim stosunkiem SiO₂/Na₂O), ponieważ to alkalia występują w nadmierze.

2.1.2. Kruszywo polimineralne

Najtrudniejsze jest oszacowanie reaktywności kruszyw polimineralnych, szczególnie naturalnych ziór. Dyfraktogram kruszywa ziwnowego przedstawiony na rysunku 2.8 wskazuje na jego skomplikowany skład mineralny.

W wyniku badań rentgenograficznych stwierdzono, że kruszywo ziwnowe zawiera znaczne ilości kwarcu, kalcytu, plagioklazów z przewagą skalenia, a także małe ilości mineralów ilastych: illitu i kaolinitu oraz dolomit. Reaktywność kruszywa ziwnowego określono w oparciu o jakościową i ilościową analizę petrograficzną. Reaktywność wydzielonych składników kruszywa oszacowano szybką metodą chemiczną według PN-92/B-06714-46 [31] oraz metodą ASTM C289 [7].
Badanie metodą ASTM C289 kruszywa żwirowego rozdrobnionego do uziarnienia mniejszego od 300 μm wykazało, że zawiera ono 71 mmol/l krzemionki rozpuszczalnej, a zmniejszenie zasadowości roztworu wynosi 70 mmol/l (rys. 2.9). Uzyskane wyniki pozwoliły na zaklasyfikowanie kruszywa żwirowego do kruszyw reaktywnych. Ilość krzemionki rozpuszczalnej w niewielkim stopniu przekroczyła granicę reaktywności, która przy określonym poziomie zmniejszenia zasadowości wynosi 63 mmol/l.

*Rys. 2.9. Reaktywność kruszywa według ASTM C289*

Badania reaktywności frakcji kruszywa żwirowego, odpowiednio 1,0-2,0 mm, 2,0-4,0 mm, 4,0-8,0 mm, 8,0-16,0 mm, zgodnie z normą PN-92/B-06714-46 wskazały na potencjalną reaktywność żwiru (rys. 2.10).

*Rys. 2.10. Ubytek masy poszczególnych frakcji, według PN-92/B-06714-46*
Wraz ze wzrostem rozdrobnienia kruszywa wzrasta ubytek masy poszczególnych frakcji, a tym samym ich reaktywność. Ubytek masy kruszywa drobnego (1,0-4,0 mm) pod wpływem działania 4% roztworu wodorotlenku sodu wynosił odpowiednio 2,0% dla frakcji 1,0-2,0 mm oraz 1,67% dla frakcji 2,0-4,0 mm. Kruszywo grube (4,0-16,0 mm) przechowywane w 10% roztworze NaOH wykazało mniejszy ubytek masy, odpowiednio 1,4% (frakcja 4,0-8,0 mm) oraz 0,75% (frakcja 8,0-16,0 mm). Podczas kąpieli kruszywa grubego w roztworze uległ on zmętnieniu. Przy czyną tego zjawiska może być rozpuszczanie spojów skał osadowych.

Wyodrębnione na podstawie obserwacji makroskopowych rodzaje ziaren kruszywa, które w metodzie oceny potencjalnej reaktywności wykazały największy ubytek masy poddano analizie petrograficznej. Obserwacje szlifów ziaren kruszywa w mikroskopie polaryzacyjnym, przy skrzyżowanych polaroidach wykazały, że składnikami reaktywnymi kruszywa są:

- wapień organodetrytyczny sparytów-mikrytowy (rys. 2.11),
- metamorficzny łupek kwarcowo-piroksenowy (rys. 2.12),
- ziarna kwarcu w granicie skaleniowo-biotytowym (rys. 2.13).

Wymienione powyżej rodzaje skał stanowią około 49% masy badanego kruszywa żwirowego. W tablicy 2.5 przedstawiono rodzaj oraz zawartość mineralów reaktywnych w kruszywie żwirowym.
**Rys. 2.12.** Zjarna glaukonitu i kwarcu rozmieszczone w spoju podstawowym ilastowo-węglanowym, pow. 240x

**Rys. 2.13.** Granit; widoczne skalenie potasowe, plagioklasy i kwarc, pow. 120x

**Tablica 2.5.** Zawartość składników reaktywnych w naturalnym kruszywie

<table>
<thead>
<tr>
<th>Rodzaj skały</th>
<th>Rodzaj składnika reaktywnego</th>
<th>Szacowana zawartość składnika reaktywnego w ziarnach kruszywa [% obj.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>piaskowiec</td>
<td>chalcedon</td>
<td>2</td>
</tr>
<tr>
<td>granit</td>
<td>kwarc</td>
<td>16</td>
</tr>
<tr>
<td>łupek kwarcowo-piroksenowy</td>
<td>spojwo opalowe</td>
<td>47</td>
</tr>
<tr>
<td>wapień</td>
<td>kwarc</td>
<td>śladowa ilość</td>
</tr>
</tbody>
</table>
Udział poszczególnych składników w całkowitym ubytku masy frakcji 4,0-8,0 mm oraz 8,0-16,0 mm zobrazowano na rysunku 2.14 [30].

Obserwowane ubytki masy w kruszywie frakcji 4-8 mm i 8-16 mm wynikają nie tylko z rozpuszczania składników reaktywnych (opal, chalcedon), ale również z rozpuszczania krzemionkowego i ilasto-wapniowego lepiszcza w tych skałach.


Tablica 2.6. Ekspansja zapraw z kruszywem ziariowym

<table>
<thead>
<tr>
<th>Norma</th>
<th>Kryterium reaktywności kruszywa</th>
<th>Ekspansja próbek zapraw [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C1260</td>
<td>ekspansja po 14 dniach &gt; 0,20%</td>
<td>0,22</td>
</tr>
<tr>
<td>ASTM C227</td>
<td>ekspansja do 90 dni &gt; 0,05%, lub po 90 dniach &gt; 0,1%</td>
<td>od 0,13 do 90 dni</td>
</tr>
</tbody>
</table>

Wyniki badań zapraw z kruszywem ziariowym, badanych metodą szybką wykazały, że wielkość ekspansji przekracza wartości graniczne i należy się spodziewać destrukcji betonu w następstwie reakcji alkaliów z kruszywem. Również wyniki badań ekspansji długoterminową metodą normową potwierdziły te obserwacje.
2.2. Składniki betonu wprowadzające sód i potas

Cement portlandzki jest uważany za główne źródło sodu i potasu, ale również inne składniki betonu mogą dostarczać dodatkowych ilości alkaliów, które mogą reagować z kruszywem.

Źródłem alkaliów w betonie mogą być:
- cement portlandzki,
- dodatki mineralne do betonu (np. popiół lotny, żużel, pył krzemionkowy, naturalne pucolany),
- kruszywa,
- domieszki chemiczne,
- środowisko zewnętrzne (woda morska, sole stosowane do odladzania nawierzchni drogowych).

2.2.1. Alkalia z cementu

Jednym z czynników decydujących o wystąpieniu reakcji alkaliów z kruszywem reakcyjnym w betonie jest odpowiednio duża zawartość tlenków sodu i potasu w cemencie [32]. Wszystkie przemysłowe cementy portlandzkie zawierają sód i potas pochodzące z pochodzenia z surowców wykorzystywanych do produkcji klinkieru cementowego, takich jak: margle, wapienie, żużel, pył krzemionkowy, naturalne pucolany. Również źródłem alkaliów może być popiół pochodzący z węgla. W ostatnich latach zawartość sodu i potasu wzrosła w następstwie zastosowania bardziej efektywnej utylizacji pyłów piecowych, koniecznej dla ochrony środowiska. Zmiany w procesie wypalania klinkieru związane z oszczędnością energii (metoda sucha produkcji klinkieru cementowego), a także z ochroną środowiska (stosowania urządzeń odpylających i zawracania pyłów do pieca) wpływają na większą zawartość alkaliów w cenencie. Sód i potas w klinkierze wykazują duże powinowactwo do siarki i przy stosunku molowym \( (\text{K}_2\text{O} + \text{Na}_2\text{O})/\text{SO}_3 < 1 \) tworzą przede wszystkim siarczany. Potas tworzy siarczan \( (\text{K}_2\text{SO}_4) \) lub sole podwójne: aftitalit \( (3\text{K}_2\text{SO}_4 \cdot \text{Na}_2\text{SO}_4) \) czy langbeinit wapniowy \( (2\text{CaSO}_4 \cdot \text{K}_2\text{SO}_4) \) [33]. Natomiast w przypadku nadmiaru siarki może powstawać siarczan wapnia w formie anhydrytu lub, częściej, siarczan potasowo-wapniowy (langbeinit wapniowy) [34-36]. Obserwacje klinkieru pod mikroskopem skaningowym wykazują, że siarczany sodu i potasu osadzają się na powierzchni faz klinkierowych, prawdopodobnie w wyniku kondensacji z fazy gazowej w piecu obrotowym [35]. Fundal [37] stwierdził występowanie higroskopijnych faz \( \text{K}_2\text{O} \times \text{Al}_2\text{O}_3 \) i \( \text{K}_2\text{O} \) w klinkierach bogatych w potas. Środowisko panujące w piecu ma wpływ na rodzaj powstających soli podwójnych. Langbeinit wapniowy powstaje w atmosferze utleniającej, a aftitalit w warunkach redukujących [37]. W większości klinkierów cementu portlandzkiego \( \text{K}_2\text{O} \) i \( \text{Na}_2\text{O} \) są w nadmiarze
w stosunku do SO$_3$ i zazwyczaj jest więcej K$_2$O niż Na$_2$O. Po utworzeniu siarczanów alkaliów pozostałe alkalia lub siarka są wiązane w fazach krzemianowych, gliniano-wych i glinożelazianowych. Przy stosunku molowym (K$_2$O + Na$_2$O)/SO$_3$ > 1 sód lokuje się głównie w fazie jednoskośnego C$_3$A. Faza ta jest znacznie mniej reaktywna niż forma regularna [38]. Potas tworzy głównie roztwory stałe w βC$_2$S [36].


Rys. 2.15. Zawartości K$_2$O, Na$_2$O, K$_2$O + Na$_2$O i SO$_3$ [mol/litr] rozpuszczalne w wodzie w zależności od stosunku molowego SO$_3$ do sumy K$_2$O + Na$_2$O w klinkierach cementowych [33]

Sód i potas tworzące w cemencie siarczany lub sole podwójne C$_2$K$_3$S$_3$ są rozpuszczalne w wodzie, natomiast gdy wchodząc w skład faz krzemianowych, szczególnie belitu, bardzo długo pozostają w fazie stałej. Rozmieszczanie sodu i potasu w składnikach klinkieru cementowego zależy w znacznym stopniu od stosunku molowego SO$_3$ do K$_2$O i Na$_2$O. Gdy stosunek ten jest mniejszy od 1, K$_2$O ma większe powinowactwo niż Na$_2$O do SO$_3$ i część całkowitego K$_2$O, która jest rozpuszczalna w wodzie, jest zwykle około dwukrotnie większa niż odpowiednia ilość
Na$_2$O. Dla stosunku molowego SO$_3$ do (K$_2$O + Na$_2$O), mniejszego od 0,5, ilość SO$_3$ rozpuszczalnego w wodzie i rozpuszczalnych w wodzie K$_2$O + Na$_2$O są w przybliżeniu równe, co pokazuje, że cała zawartość SO$_3$ występuje w siarczankach sodu i potasu. Dla stosunku molowego zawartego między 0,5 i 1,0 niemal cała zawartość SO$_3$ jest zazwyczaj rozpuszczalna w wodzie, ale zawartość rozpuszczalna w wodzie K$_2$O + Na$_2$O jest mniejsza od rozpuszczalnego w wodzie SO$_3$, co wskazuje na obecność C$_2$K$_3$S. Części K$_2$O i Na$_2$O, które są rozpuszczalne w wodzie zbliżają się odpowiednio do 1,0 i 0,5 przy stosunkach molowych silicznika do alkaliów bliskich 1,5. Przy wyższych stosunkach udział rozpuszczalnego K i Na jest zmienny i wykazuje tendencję do pewnego spadku. Przedstawione krzywe na rysunku 2.16 pozwalają na określenie prawdopodobnych zawartości rozpuszczalnych w wodzie K$_2$O i Na$_2$O i SO$_3$ jeśli znamy ich zawartość w klinkierze. Dla większości klinkierów główną fazą siarczanową jest aftitalit o stosunku K:Na = 3,0, a także niewielka zawartość siarczanu potasu lub C$_2$K$_3$S lub obu tych faz.

Sód i potas występujące w cementie w postaci siarczanów reagują z wodorotlenkiem wapnia zgodnie z równaniem:

\[
\text{Me}_2\text{SO}_4 + \text{Ca(OH)}_2 \leftrightarrow 2\text{MeOH} + \text{CaSO}_4 \quad (2.1)
\]

Natomiast alkalia tworzące roztwory stałe z C$_3$A przechodzą do roztworu wolniej, w związku z wolną hydratacją βC$_3$S zawarte w tej faze alkalia są praktycznie niereaktywne. Aniony towarzyszące jonom Na$^+$ i K$^+$ wbudowują się w produkty hydratacji o malej rozpuszczalności, takie jak: faza C-S-H, ettringit czy monosiarczan. Efektem tego procesu jest uwalnianie równoważnej ilości jonów OH$^-$ do roztworu w porach betonu [33]. Na przechodzenie alkaliów do roztworu w porach betonu wpływa także rozmieszczenie poszczególnych faz w polimineralnych ziarnach cementu. Z tych względów rozróżnia się całkowitą zawartość alkaliów w cementie, alkalia rozpuszczalne w wodzie oraz tak zwaną zawartość alkaliów „aktywnych”, które odpowiadają ilości Na$_2$O$_e$, przechodzącego do roztworu po różnych okresach hydratacji. Z danych dotyczących całkowitej zawartości alkaliów w cementach, zawartości alkaliów rozpuszczalnych w wodzie oraz zawartości alkaliów aktywnych wynika, że cementy o takiej samej całkowitej zawartości alkaliów mogą mieć różnicą zawartość alkaliów aktywnych czy rozpuszczalnych w wodzie (rys. 2.15). Ilość alkaliów w cemencie portlandzkim jest zazwyczaj wyrażona jako równoważnik sodowy (Na$_2$O$_e$), który jest obliczany za pomocą następującego wzoru:

\[
\text{Na}_2\text{O}_e = \text{Na}_2\text{O} + 0,658 \text{K}_2\text{O},
\]

gdzie Na$_2$O i K$_2$O są zawartościami w % masowych tlenku sodu i tlenku potasu w cemencie portlandzkim.
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Sód i potas występują głównie w związkach dobrze rozpuszczalnych w wodzie i dominują w roztworze w porach betonu, chociaż ich całkowita zawartość w cemencie portlandzkim jest względnie niska (w zakresie od 0,5 do 1,3% Na₂O, dla większości cementów przemysłowych) w porównaniu do innych tlenków. W większości cementów stosunek masowy K₂O do Na₂O jest w zakresie od około 2:1 do 10:1 [40]. Zależności między reaktywnością kruszywa krzemionkowego a zawartością alkaliów przedstawioną jako równoważnik Na₂O wynikają z faktu, że stosunek K:Na dla wielu cementów jest zbliżony. Jednak w wielu pracach przedstawia się odmienne poglądy dotyczące wpływu jonów sodu i potasu na reakcję alkaliów z krzemionką. W pracach Leemanna i Lothenbach [41] uzyskano różny poziom ekspansji zaprawy o tej samej zawartości alkaliów, wyrażonych w postaci ekwiwalentu sodowego Na₂O, lecz o innym stosunku Na/K. Natomiast Borchers i Muller [42] twierdzą, że jony sodu wykazują większą aktywność od jonów potasu, tym samym zwiększając szybkość reakcji alkaliów z kruszywem. Houa [43] stwierdził, iż jony K⁺ i Na⁺ zachowują się podobnie w stosunku do reaktywnego ziarna kruszywa, jednakże szybkość reakcji jest większa w przypadku wodorotlenku potasu.

W oparciu o wcześnie prace Stantona [13] ustalono wiele lat temu, że ekspansja wynikająca z reakcji alkaliów z krzemionką jest mało prawdopodobna, gdy zawartość alkaliów w cemencie jest mniejsza od 0,6% Na₂O. Graniczna zawartość nie przekraczająca 0,6% Na₂O w cemencie uznawana jest w wielu krajach jako eliminująca ekspansję betonu związaną z reakcją alkaliów z kruszywem. Stąd wiele receptur umożliwia stosowanie kruszyw potencjalnie reaktywnych, pod warunkiem że zawartość alkaliów w cemencie nie przekracza 0,6% Na₂O. Jednakże obecnie uważa się, że ograniczenie zawartości alkaliów w cemencie portlandzkim nie jest samo przez się skuteczną metodą zapobiegania uszkodzeniom wywołanym reakcją alkaliów z krzemionką. Takie podejście nie ogranicza całkowitej zawartości sodu i potasu (Na₂O) w mieszanice betonowej, pochodzącej również z innych źródeł.

### 2.2.2. Zawartość alkaliów w betonie

Obserwowana wielkość ekspansji betonu jest funkcją reaktywności kruszywa i całkowitej ilości reaktywnych alkaliów przypadających na metr sześcienny betonu. Bezpieczny poziom zawartości reaktywnych alkaliów w betonie określa się doświadczalnie dla każdego przypadku analizowanego kruszywa i cementu. Jest oczywiste, że alkaliczność cieczy w porach w betonie zależy zarówno od zawartości alkaliów w cemencie, jak też od ilości cementu w betonie. Reaktywne alkalia występujące w betonie z cementu portlandzkiego oblicza się następująco:

\[
A = \frac{c \cdot a}{100}
\]  

(2.2)
gdzie:

\[ A \] – zawartość alkaliów w cemencie [kg/m³],

\[ C \] – zawartość cementu portlandzkiego w betonie [kg/m³],

\[ a \] – zawartość alkaliów w cemencie portlandzkim, wyrażonych jako Na₂Oᵦ [% masy].

Przyjmowanie granicznej zawartości alkaliów w cemencie wiąże się z dążeniem do zmniejszenia stężenia jonów sodu i potasu w fazie ciekiej zaczynu. Równocześnie jony te powodują znaczne zmniejszenie stężenia wodorotlenku wapnia w fazie kapilarna. Graniczna zawartość alkaliów nie przekraczająca 0,6% Na₂Oᵦ nie uwzględnia jednak udziału alkaliów rozpuszczalnych w wodzie oraz zawartości cementu w betonie. Również Hobbs [44] uważa, że ekspansja występuje tylko wówczas, gdy zawartość rozpuszczalnych alkaliów, wyrażonych w formie Na₂Oᵦ, przekracza 2,5 kg/m³ betonu. Dotyczy to całkowitej zawartości alkaliów, wprowadzonych ze wszystkimi składnikami betonu. Natomiast Locher i Sprung [40] określili graniczną zawartość równoważnika alkaliów na 3 kg Na₂O w 1 m³ betonu, a Oberholster [45] uznał za bezpieczną granicę 1,8 kg Na₂Oᵦ w 1 m³ betonu (rys. 2.16). Autor ten wyróżnia trzy zakresy zawartości alkaliów. Przy zawartości przekraczającej 3,8 kg Na₂Oᵦ w m³ betonu niszcząca ekspansja występuje zawsze, a przy zawartości mniejszej niż 1,8 kg Na₂Oᵦ, nie ma takiego zagrożenia. W zakresie pośrednim zawartości tlenków sodu i potasu wielkość ekspanacji zależy od reaktywności kruszywa i zawartości rozpuszczalnych alkaliów w cemencie i ten zakres określono jako potencjalnie reaktywny. Dotyczy to kruszyw o dużej reaktywności w stosunku do alkaliów. W wielu krajach ustalono bezpieczne poziomy zawartości alkaliów w betonie, uwzględniając reaktywność kruszyw (tabl. 2.7).

Rys. 2.16. Zależność między zawartością aktywnych alkaliów w cemencie i cementu w betonie, a możliwością zachodzenia reakcji kruszyw z alkaliami [45]
Tablica 2.7. Bezpieczna zawartość alkaliów w betonie przyjmowana w różnych krajach

<table>
<thead>
<tr>
<th>Kraj</th>
<th>Rodzaj kruszywa i rodzaj mineralów reaktywnych</th>
<th>Zawartość alkaliów</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wielka Brytania</td>
<td>kruszywa reaktywne</td>
<td>&lt; 4 kg/m³</td>
</tr>
<tr>
<td>Wielka Brytania</td>
<td>kruszywa zawierające krzemionkę opalową</td>
<td>≤ 3 kg/m³</td>
</tr>
<tr>
<td>Nowa Zelandia</td>
<td>kruszywa reaktywne</td>
<td>3,5 kg/m³</td>
</tr>
<tr>
<td>USSR, japońskie normy</td>
<td>kruszywa reaktywne</td>
<td>3 kg/m³</td>
</tr>
<tr>
<td>przemysłowe, normy irańskie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Południowa Afryka</td>
<td>szkodliwa ekspansja wystąpić</td>
<td>&gt; 3,8 kg/m³</td>
</tr>
<tr>
<td></td>
<td>uniknie się szkodliwej ekspansji</td>
<td>&lt; 1,8 kg/m³</td>
</tr>
<tr>
<td></td>
<td>stopień ekspansji zależy od reaktywności kruszywa</td>
<td>1,8 kg/m³ &lt; Na₂Oₑ &lt; 3,8 kg/m³</td>
</tr>
</tbody>
</table>

Potrzeba normalizacji cementów z punktu widzenia zawartości alkaliów w przypadku stosowania kruszyw reaktywnych była już wcześniej rozważana [46]. Występowanie ekspansji można w teorii wyeliminować przez zachowanie odpowiedniego stosunku aktywnych alkaliów do reaktywnej krzemionki. Natomiast ustalona doświadczalnie wielkość ekspansji zgadza się na ogół najlepiej z zawartością alkaliów „aktywnych” (rys. 2.17), czyli ich stężeniem w roztworze w porach betonu, oznaczonym zgodnie z ASTM C311 [47].

Rys. 2.17. Zależność liniowej ekspansji beleczek zapraw po 30 tygodniach oznaczonej według ASTM C227 od zawartości aktywnych alkaliów w cemencie [45]
Zależności zmian liniowych zapraw od całkowitej zawartości alkaliów aktywnych i rozpuszczalnych przedstawione na rysunkach 2.17 i 2.18 pozwala na stwierdzenie, że zawartość alkaliów aktywnych dobrze charakteryzuje cement pod względem jego reaktywności z krzemionką. Źródło alkaliów może stanowić również żel powstający w wyniku reakcji alkaliów z krzemionką, który wzbogacony w jony wapnia uwalnia do roztworu w betonie kationy sodu i potasu. Teoretycznie żel uwodnionego krzemianu sodowo-potasowo-wapniowego może uwalniać te jony do czasu, aż wszystkie reaktywne ziarna ulegną reakcji. Jednak z drugiej strony samo powstawanie żelu wiąże się ze zmniejszeniem alkaliczności roztworów w porach [48].

Zmniejszenie dopuszczalnej zawartości sodu i potasu w cemencie portlandzkim uważano za wystarczający warunek zapobiegania szkodliwej reakcji alkaliów z kruszywem. Jednak obecnie uważa się, że ryzyko ekspansji betonu z kruszyw reaktywnych jest proporcjonalne do całkowitej zawartości alkaliów w betonie, co powinno być uwzględniane w praktyce. W rzeczywistości obliczenia zawartości reaktywnych alkaliów w betonie powinny uwzględniać zarówno ich zawartości w cemencie, jak i zawartość cementu w betonie. Stosowanie cementów portlandzkich o dużej zawartości sodu i potasu oraz kruszyw reaktywnych, może powodować uszkodzenia betonu nawet po kilku latach. Ograniczenie zawartości alkaliów powinno obejmować zarówno sód i potas zawarte w cemencie, jak i pochodzące
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

z innych źródeł. Istnieje również prawdopodobieństwo, zwiększenia stężenia jonów sodu i potasu w roztworze w betonie przez składniki zawarte w kruszywie, dodatkach mineralnych i domieszkach [49, 50].

2.2.3. Sód i potas wprowadzone do betonu z dodatkami mineralnymi i domieszkami chemicznymi

Zawartość alkaliów w cementach portlandzkich jest wiarygodną informacją dla oceny ich potencjalnej reaktywności z kruszywami, ponieważ są one uwalniane do roztworu podczas hydratacji cementu. W przypadku cementów z dodatkami, całkowita zawartość alkaliów nie jest wystarczającym wskaźnikiem, ponieważ niektóre z nich są trudno rozpuszczalne, a jony sodu i potasu nie są wtedy uwalniane do roztworu w porach betonu. Tylko niewielka część tych alkaliów, które są rozpuszczalne w wodzie może mieć wpływ na stężenie sodu i potasu w roztworze betonu we wczesnych etapach hydratacji. Zwykle przyjmowana wartość 0,6% jako równoważnik Na₂O_e stanowiąca graniczną ilość alkaliów w cencie portlandzkim o małej sumarycznej ich zawartości, nie jest odpowiednia dla cementu z dodatkami mineralnymi: żużłem wielkopiecowym czy krzemionkowym popiołem lotnym.

W przypadku cementów hutniczych konieczne jest rozróżnienie między tymi, ze średnią zawartością żużła (< 50%) oraz tymi o dużej zawartości żużła (> 65%). Cementy mogą być zaliczane do spojów o małej zawartości alkaliów, gdy przy zawartości żużła przekraczającej 50% zawierają mniej niż 0,9% Na₂O_e, a przy zawartości żużła większej od 65% – mniej niż 2,0% Na₂O_e. Na rysunku 2.19 przedstawiono wpływ zawartości żużła na poziom zawartości aktywnego Na₂O_e.

![Rys. 2.19. Wpływ dodatku żużła i zawartości Na₂O_e w cemencie na zawartość alkaliów aktywnych][1]
Wszystkie cementy położone poniżej krzywej pokazanej na rysunku 2.19 będą zachowywać się jak cementy portlandzkie o mniejszym od 0,60% równoważniku sodowo-wym Na₂Oₑ. Nie odnotowano przypadków szkodliwej ekspansji w następstwie reakcji alkaliów z kruszywem, gdy graniczne zawartości alkaliów były przestrzegane [51].

Narzeczane pucolany o optymalnych właściwościach nie są dostępne we wszystkich krajach, a import materiału nie zawsze jest możliwy. Praktycznym rozwiązaniem jest zastosowanie sztucznych pucolan, takich jak popioły lotne lub mikrokrzemionka. Materiały pucolanowe można dodawać bezpośrednio do mieszanki betonowej, jednak właściwe wymieszanie bardzo drobnych proszków jest trudne w przypadku konwencjonalnego sposobu produkcji mieszanki betonowej.

Bezpieczną zawartość alkaliów w cementach z dodatkami mineralnymi należy określić przed sporządzeniem mieszanki. W celu obliczenia całkowitej zawartości alkaliów w cementach z dodatkami mineralnymi konieczna jest znajomość zawartości alkaliów w klinkierze, zawartość dodatku mineralnego oraz zawartości alkaliów alkaliów. Aktywność alkaliów w dodatkach mineralnych w roztworze w porach betonu jest nadal przedmiotem badań. Można się odniesie do zawartości alkaliów rozpuszczalnych w wodzie, lecz zawartość alkaliów aktywnych może być znacznie większa. Ilość reaktywnych alkaliów pochodzących z źużła wielkopiecowego lub materiału pucolanowego powinna być zawarta w sumarycznej ilości alkaliów w betonie i wyrażona za pomocą wzoru:

\[ A = \frac{C \cdot a}{100} + D \]  \hspace{1cm} (2.3)
\[ D = E \cdot d/100 \]  \hspace{1cm} (2.4)

gdzie:
- \( A \) – zawartość alkaliów w betonie \([\text{kg/m}^3]\),
- \( C \) – zawartość cementu w betonie \([\text{kg/m}^3]\),
- \( a \) – zawartość alkaliów rozpuszczalnych w kwasie, w cementie jako % Na₂Oₑ,
- \( d \) – zawartość aktywnych alkaliów w źużlu lub pucolanie jako % Na₂Oₑ,
- \( D \) – zawartość alkaliów pochodzących z źużła wielkopiecowego lub pucolan w \([\text{kg/m}^3]\),
- \( E \) – zawartość źużla lub pucolan w betonie \([\text{kg/m}^3]\).

Stosowane powszechnie dodatki mineralne, a mianowicie popiół lotny i źużel, mogą uwalniać do roztworu w porach betonu jony sodu i potasu oraz wpływać na stężenie jonu hydroksylowego. Popioły lotne zawierające dużo fazy szklistej reagują w betonie z wodą i wodorotlenkiem wapnia, tworząc uwodnione krzemiany i gлинiany wapnia. Sód i potas w popiołach lotnych występują w szkle, i w normalnej temperaturze przechodzą do roztworu o wiele wolniej niż te składniki zawarte w cementie w postaci siarczanów. Całkowita zawartość alkaliów w popiołach lot-
nymi wyrażana jako równoważnik tlenku sodu waha się od 0,7 do 7,8% w porównaniu z zakresem od około 0,8 do 1,2% w cemencie portlandzkim [52]. Ilości sodu i potasu wprowadzone do roztworu w porach betonu przez różne popioły lotne ulegają zmniejszeniu się wraz ze zwiększeniem procentowej zawartości popiołu w stosunku do cementu [53].

W zaprawach i betonach zastąpienie 30% cementu o dużej zawartości sodu i potasu przez popiół powoduje zmniejszenie ekspansji [54, 55]. Analizy wyników badań ekspansji przedstawiane przez wielu badaczy prowadzą jednak do wniosku, że skuteczność krzemionkowego popiołu lotnego w ograniczeniu ekspansji wskutek reakcji alkaliów z krzemionką jest zależna od sumarycznego stężenia alkaliów w roztworze w porach betonu [56]. Najczęściej przyjmuje się, że ilość alkaliów uwalniana przez popiół lotny do roztworu stanowi jedną szóstą zawartości sodu i potasu w tym krzemionkowym popiele (rys. 2.20) [57].

Rys. 2.20. Zależność ekspansji po 200 dniach hydratacji w funkcji zawartości alkaliów w cemencie powiększonej o jedną szóstą zawartości alkaliów z krzemionkowego popiołu lotnego [57]
Granulowany, mielony żużel wielkopiecowy, zawierający dużo fazy szklistej, reaguje z wodorotlenkiem wapnia, tworząc uwodnione krzemiany i gliniany wapnia. W żużu sód i potas zawarte są w fazie szklistej i przechodzą do roztworu w porach betonu wolniej niż z cementu portlandzkiego, ale szybciej niż z krzemionkowego popiołu lotnego. Sód i potas rozpuszczalne w kwasie solnym z żuża wyrażone jako równoważnik tlenku sodu obecne są w ilości od 0,3 do 2,6% masy. Zgodnie z publikowanymi danymi żużel powoduje zmniejszenie stężenia jonu hydroksylovego, a więc zawartości wodorotlenków sodu i potasu w roztworze w porach betonu [57]. Zawartość alkaliów rozpuszczalnych spada ze zwiększeniem zawartości żuża w stosunku do cementu [58]. Sód i potas wprowadzone do roztworu w porach betonu przez granulowany żużel wielkopiecowy znajdują się w zakresie od 39% do 63% całkowitej zawartości tych składników w żużu. Najczęściej przyjmuje się, że ilość sodu i potasu przechodząca do roztworu z żuża jest w przybliżeniu równa jednej drugiej sumarycznej ich zawartości, a więc Na2Oe w żużu. Rysunek 2.21 przedstawia zależność ekspansji w funkcji zawartości alkaliów w cemencie powiększonej o jedną drugą zawartość alkaliów w żużu.

**Rys. 2.21.** Zależność ekspansji po 200 dniach hydratacji w funkcji zawartości Na2Oe w cemencie powiększonej o jedną drugą tlenków w żużu [57]
Jony sodu i potasu pochodzące z zastosowanych dodatków mineralnych, tj. granulowanego źużła wielkopiecowego, metakaolinu, popiołu lotnego wiązane są przez produkty hydratacji cementu, żel krzemianów alkaliczno-wapniowych oraz absorbowane przez kruszywo. Podobnie jak w przypadku alkaliów z kruszywa mogą one ulegać powolnemu uwalnianiu, szczególnie gdy zawarte są w jeszcze unwodnionych składnikach betonu [58].

Wpływ domieszek chemicznych w zapobieganiu ekspansji wywołanej reakcją alkaliów z krzemionką jest badany od ponad sześćdziesięciu lat i ciągle jest na etapie doświadczeń [59]. Stosowane domieszki z reguły uwalniają stosunkowo rozpuszczalne wodorotlenki, wiążące się w trudno rozpuszczalne krzemiany. Ich składniki nie powinny wpływać na reakcję hydratacji cementu w sposób zaburzający właściwości użytkowe oraz nie powinny brać udziału w reakcji alkaliów z kruszywem, tworząc składniki ekspansyjne [60].

Przy wprowadzeniu małych ilości (zwykle mniej niż 0,6% masy cementu) związków sodu i potasu, a mianowicie siarczanów, chlorków, azotanów i węglanów do mieszanek betonowej zaobserwowano zwiększenie ekspansji zapraw, jednak wyniki tych badań nie były jednoznaczne [12, 61]. Hobbs [56] obserwował małą zależność ekspansji od dodanych związków sodu i potasu. Natomiast w innym przypadku zastosowanie superplastyfikatorów w zaprawie zawierającej 2% opalu jako składnika reaktywnego zmniejszało ekspansję wywołaną reakcją alkaliów z krzemionką.

Rozcieńczone roztwory superplastyfikatorów, takich jak sulfonowany kondensat melaminowo-formaldehydowy (SMF), sulfonowany kondensat naftalenowo-formaldehydowy (SNF) oraz lignosulfonian sodowy (LS) zawierają Na\textsubscript{2}O\textsubscript{e} odpowiednio 0,714 g/l, 0,499 g/l i 2,224 g/l. Przy zastosowaniu superplastyfikatora w ilości kilku procent w stosunku do masy cementu ilość wprowadzonych alkaliów może wzrosnąć o około 0,2 kg/m\textsuperscript{3} betonu. Obserwowane zwiększenie ekspansji przez obecność superplastyfikatora Wang i Gillott [62] wiązać ze zmianą właściwości fizykochemicznych powstającego żelu, a przede wszystkim lepkości i zdolności do pęcznienia.

2.2.4. Jony sodu i potasu pochodzące z kruszywa

Określenie bezpiecznej zawartości alkaliów w roztworze w porach betonu wykonanego z kruszywa reagującego z tymi wodorotlenkami uwzględnia zazwyczaj tylko sól i potas pochodzący z materiału wiązającego. Uważa się, że zastosowanie cementu o zawartości alkaliów mniejszej od 0,6% Na\textsubscript{2}O\textsubscript{e}, a więc przy ograniczeniu całkowitej zawartości alkaliów dostarczonej z cementu do 1,8 kg Na\textsubscript{2}O\textsubscript{e} w m\textsuperscript{3} betonu w przypadku udziału 300 kg cementu/m\textsuperscript{3}, eliminuje możliwość reakcji z nimi kruszywa, nawet gdy jest ono potencjalnie reaktywne.

**Rys. 2.22.** Zawartość alkaliów uwalnianych przez różne kruszywa do roztworu wodorotlenku wapnia [65]

W związku z tym nawet w konstrukcji betonowej wykonanej z cementu o małej zawartości sodu i potasu może wystąpić reakcja tych wodorotlenków z kruszywem. Potwierdzili to Stark i Bhatty [66], obserwując w betonach z kruszywa wulkanicznego, w przypadku bardzo małej zawartości alkaliów w cemencie (~0,35% Na₂O₆) występowanie reakcji alkaliów z kruszywem. Również Kawamura [67] podaje, że sód i potas, których źródłem są kruszywa wulkaniczne mogą przechodzić do roztworu w porach betonu w wyniku wymiany tych kationów z wapniem zawartym w fazie ciekłej. Także w betonie, w którym zastosowano mieszanię kruszywa reaktywnego i niereaktywnego, kruszywo niereaktywne (bazalt) powodowało wzrost ekspansji betonu przez oddawanie alkaliów do roztworu [68].
W badaniach modelowych uszeregowano kruszywa ze względu na ilość uwalnianych do nasyconego roztworu wodorotlenku wapnia alkaliów i stwierdzono, że kruszywa zawierające ły i skalenie oddają od kilku do kilkunastu kilogramów Na$_2$O$_e$ na jeden metr sześcienny betonu [65]. Aktywny sód i potas, które mogą potencjalnie uczestniczyć w reakcji z kruszywem, to ich wodorotlenki obecne w roztworze, w porach betonu. Przypadki, w których obserwowano wzrost stężenia alkaliów w roztworze w porach stwardniałego betonu reagujące z kruszywami pozostają nadal problemem niewyjaśnionym. Wiele przypadków reakcji alkaliów z krzemionką występuje przy udokumentowanym zastosowaniu cementu o małej zawartości Na$_2$O$_e$ do sporządzania betonu i nasuwa się pytanie: czy kruszywa mogą reagować, gdy źródłem jonów sodu i potasu jest kruszywo? Odpowiedź na to pytanie można znaleźć, określając możliwą ilość alkaliów dostarczanych z kruszywa do roztworu w porach betonu lub mierząc zawartość alkaliów w roztworze w porach betonu.

Zawartości alkaliów uwalnianych przez kruszywa do wodnego roztworu wodorotlenku wapnia po różnym czasie określiła Owsiak w pracy [49], stosując normową metodę dla oznaczania alkaliów aktywnych w cemencie [47]. Określono także dla wybranych kruszyw zawartość alkaliów rozpuszczalnych w gorącej wodzie. W badaniach zastosowano kruszywa ze skał magmowych: bazalt i granit oraz dolomit. Analizowane kruszywa są powszechnie stosowane do produkcji betonu. Kruszywo granitowe i dolomitowe w badaniu normowym [69] wykazało po trzech latach obecność opóźnionej reakcji alkaliów z krzemystem [70, 71]. Składnikami granitu biotytowego jest kwarc o teksturze zaburzonej oraz plagioklasy, skaleń potasowy i biotyt, natomiast składnikami bazaltu są plagioklasy (albit), pirokseny (diopsyd), oliwin oraz magnetyt i ilmenit. Głównym i praktycznie jedynym składnikiem dolomitu jest minerał dolomit, oprócz tego występuje w niewielkich ilościach kalcyt, minerały ilaste, tlenki żelaza oraz kwarc.

Do określania zawartości sodu i potasu zastosowano metodę ekstrahowania alkaliów z krzemienia w obecności wodorotlenku wapnia [60]. Stężenia sodu i potasu w roztworze oznaczano po 1, 7, 28 i 90 dniach metodą absorpcji atomowej. W tablicy 2.8 i na rysunku 2.23 przedstawiono procentowe zawartości sodu i potasu, które uległy rozpuszczeniu z trzech kruszyw, po różnym czasie, wyrażone jako równoważnik sodowy Na$_2$O$_e$.

W tablicy 2.8 zamieszczono również zawartość alkaliów rozpuszczalnych w kruszywach zanurzonych w gorącej wodzie i w przeliczeniu na zawartość w jednym m$^3$ betonu, zakładając przeciętną zawartość tego kruszywa w betonie wynoszącą 1300 kg/m$^3$. 

2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

75
Rys. 2.23. Wzrost zawartości rozpuszczalnych alkaliów w kruszywach poddanych działaniu nasyconego roztworu wodorotlenku wapnia [49]

Tablica 2.8. Zawartość rozpuszczalnych alkaliów z kruszyw poddanych działaniu gorącej wody [49]

<table>
<thead>
<tr>
<th>Rodzaj kruszywa</th>
<th>Na$_2$O [%]</th>
<th>K$_2$O [%]</th>
<th>Na$_2$O$_e$ [%]</th>
<th>Zawartość Na$_2$O$_e$ w betonie* [kg/m$^3$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>bazalt</td>
<td>0,074</td>
<td>0,020</td>
<td>0,116</td>
<td>1,51</td>
</tr>
<tr>
<td>granit</td>
<td>0,014</td>
<td>0,044</td>
<td>0,043</td>
<td>0,56</td>
</tr>
<tr>
<td>dolomit</td>
<td>0,009</td>
<td>0,014</td>
<td>0,015</td>
<td>0,20</td>
</tr>
<tr>
<td>beton z granitem</td>
<td>0,018</td>
<td>0,126</td>
<td>0,101</td>
<td>2,28</td>
</tr>
</tbody>
</table>

*1300 kg/m$^3$

Ilość alkaliów przechodzących do nasyconego roztworu Ca(OH)$_2$ była większa w początkowym okresie, a po dłuższym czasie zmniejszała się. W roztworach tych po 1 dniu stosunek Na$_2$O do K$_2$O był zbliżony do zawartości tych tlenków w składzie chemicznym kruszywa. W późniejszym okresie stosunek tlenku sodu do potasu zmieniał się, co było prawdopodobnie związane ze zróżnicowaną zdolnością do oddawania tych jonów do roztworu przez poszczególne minerały lub z powstawaniem na ziarnach kruszywa warstewek oporowych. Należy się spodziewać, że ilość uwalnianych alkaliów z kruszyw w roztworze w porach betonu będzie mniejsza przede wszystkim ze względu na stężenie tych wodorotlenków w roztworze. Ponadto powierzchnia właściwa kruszywa w warunkach rzeczywistych jest dużo mniejsza niż zastosowanego w doświadczeniu kruszywa rozdrobnionego do uzia...
Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

nienia ≤0,75 μm, co będzie miało decydujący wpływ, bowiem uwalnianie jonów do roztworu może zachodzić jedynie z zewnętrznych warstw ziaren kruszywa.

Tablica 2.9. Średnia zawartość alkaliów w kruszywach, które uległy rozpuszczeniu w nasyconym roztworze wodorotlenku wapnia [49]

<table>
<thead>
<tr>
<th>Czas zanurzenia, dni</th>
<th>Rodzaj kruszywa</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Na₂Oe</th>
<th>Na₂O/K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bazalt</td>
<td>0,066</td>
<td>0,021</td>
<td>0,089</td>
<td>0,025</td>
<td>0,105</td>
<td>3,5</td>
</tr>
<tr>
<td></td>
<td>granit</td>
<td>0,015</td>
<td>0,042</td>
<td>0,020</td>
<td>0,050</td>
<td>0,053</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>dolomit</td>
<td>0,011</td>
<td>0,006</td>
<td>0,015</td>
<td>0,007</td>
<td>0,020</td>
<td>2,1</td>
</tr>
<tr>
<td>7</td>
<td>bazalt</td>
<td>0,172</td>
<td>0,056</td>
<td>0,233</td>
<td>0,070</td>
<td>0,279</td>
<td>3,07</td>
</tr>
<tr>
<td></td>
<td>granit</td>
<td>0,030</td>
<td>0,036</td>
<td>0,040</td>
<td>0,043</td>
<td>0,068</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td>dolomit</td>
<td>0,027</td>
<td>0,006</td>
<td>0,037</td>
<td>0,007</td>
<td>0,041</td>
<td>5,3</td>
</tr>
<tr>
<td>28</td>
<td>bazalt</td>
<td>0,218</td>
<td>0,119</td>
<td>0,294</td>
<td>0,143</td>
<td>0,388</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td>granit</td>
<td>0,072</td>
<td>0,085</td>
<td>0,097</td>
<td>0,116</td>
<td>0,173</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>dolomit</td>
<td>0,027</td>
<td>0,005</td>
<td>0,037</td>
<td>0,006</td>
<td>0,041</td>
<td>5,3</td>
</tr>
<tr>
<td>90</td>
<td>bazalt</td>
<td>0,248</td>
<td>0,168</td>
<td>0,335</td>
<td>0,202</td>
<td>0,468</td>
<td>1,65</td>
</tr>
<tr>
<td></td>
<td>granit</td>
<td>0,088</td>
<td>0,117</td>
<td>0,119</td>
<td>0,141</td>
<td>0,212</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>dolomit</td>
<td>0,030</td>
<td>0,006</td>
<td>0,040</td>
<td>0,007</td>
<td>0,045</td>
<td>5,7</td>
</tr>
</tbody>
</table>

Całkowita ilość alkaliów (Na₂Oₐ) rozpuszczalnych w kruszywach zanurzonych w roztworze nasyconym wodorotlenku wapnia stanowi w przypadku bazaltu około 0,5% masowych, a granitu – 0,21% (rys. 2.23). Natomiast zawartość alkaliów rozpuszczalnych w wodzie w przypadku badanych kruszyw stanowi 20-30% tej wartości, które przechodzią do nasyconego roztworu wodorotlenku wapnia. W wielu publikacjach zwraca się uwagę, że skały wulkaniczne (szczególnie bazalty) oddają do roztworu w porach betonu sód i potas (szczególnie jony sodu), zwiększając ich stężenie w roztworze w porach betonu. W związku z tym może ono osiągnąć poziom taki sam, jak przy zastosowaniu cementu o dużej zawartości alkaliów. Bazalnty uwalniają do roztworu w porach betonu od 0,3 do 1,0% Na₂Oe, co jest związane ze stopniem rozdrobnienia ziaren mineralów bogatych w alkalia [72]. Uwzględniając zawartość bazalu wynoszącą ponad 1000 kg/m³ betonu, zawartość alkaliów może wzrastać nawet o kilka kg/m³, co przy równoczesnym zastosowaniu
reaktywnego kruszywa drobnego (piasku zawierającego andezyt czy opal) może być przyczyną wystąpienia reakcji alkalia-krzemionka.

Zdolność kruszyw do uwalniania sodu i potasu do roztworu w porach betonu może mieć decydujące znaczenie, w przypadku gdy do otrzymania betonu zastosowane zostały reaktywne lub potencjalnie reaktywne kruszywa. Szczególnie w dużych konstrukcjach betonowych narażonych na działanie wilgotnego środowiska zastosowanie cementu o małej zawartości alkaliów może być niewystarczającym środkiem zabezpieczenia betonu przed destrukcją [64]. Zdarzały się przypadki, że kruszywa zawierające reaktywną krzemionkę, zawierały również sód i potas, które przechodzą do roztworu w porach betonu, zwiększając jego zasadowość do poziomu mogącego spowodować ich reakcję z krzemionką. Takie przypadki odnotowano we Francji i Kanadzie. Kruszywa mogą być źródłem sodu i potasu, gdy są zanieczyszczone solami lub w wyniku uwalniania alkaliów rozpuszczalnych. Bèrube [48], analizując 17 rodzajów kruszyw, wykazał, że zwiększają one zawartość alkaliów o ok. 0,1 do 1,6 kg Na₂O w 1 m³ betonu. Zastosowanie w tym przypadku cementu o małej zawartości sodu i potasu nie zapobiega możliwości wystąpienia reakcji alkaliów z kruszywem.

2.3. Skład roztworu w porach betonu

2.3.1. Rola wody w betonie

W rozważaniach dotyczących wpływu składu fazy ciekłej w betonie na ekspan- sję wywołaną reakcją alkaliów z krzemionką należy zwrócić również uwagę na rolę wody. Powszechnie uważa się, że w reakcji alkaliów z krzemionką stopień wilgotności betonu odgrywa podstawową rolę i często obserwuje się, że zniszczenie betonu jest tym większe, im większa jest jego wilgotność. Nie określono granicznej zawartości wody, poniżej której krzemionka nie reaguje i pęcznienie betonu nie występuje. Jednak procesy te mogą być szybko wznowione, gdy wilgotność betonu wzrośnie [73]. Pewna zawartość wilgoci jest niezbędna zarówno dla wystąpienia reakcji alkaliów z kruszywem, jak też dla zapewnienia ekspansji żelu. Powszechnie uważa się, że nie będzie postępu reakcji alkaliów z kruszywem, gdy wilgotność względna betonu będzie mniejsza od 80% (rys. 2.24). Lokalne różnice wilgotności, występujące w obrębie tej samej konstrukcji, mogą powodować bardzo różne uszkodzenia wywołane reakcją alkaliów z kruszywem. W szczególności części konstrukcji narażone na stały lub zmienny dostęp wilgoci (np. w wyniku słabego odwadniania) mogą wykazywać znaczne uszkodzenia wywołane reakcją alkaliów z krzemionką, podczas gdy inne części konstrukcji, które pozostają suche, wykazują niewielkie uszkodzenia lub ich brak.
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Olařson [75] wykazał, że ekspansja ulega zahamowaniu poniżej progowej zawartości wilgotności względnej wynoszącej 80% w temperaturze 20°C, a Kurihara i Katawaki [76] zaobserwowali brak ekspansji w temperaturze w 40°C przy wilgotności względnej 90%. Badania przeprowadzone przez Larive’a [73] wykazują, że nie tylko ekspansja, ale także powstawanie żelu uwodnionego krzemianu sodowo-potasowo-wapniowego ustawie, gdy wilgotność betonu jest mała. Ekspansja betonu jest proporcjonalna do wilgotności betonu, a zawartość wody wolnej w betonie zmniejsza się ze spadkiem wilgotności względnej (przy zawartości alkaliów wynoszącej około 8 kg/m3 ekspansja ulega zahamowaniu przy wilgotności względnej ≤ 80%, a przy zawartości 6 kg/m3 przy wilgotności względnej ≤ 90%). Stąd zahamowanie ekspansji może być osiągnięte przez kontrolowanie zawartości wilgoci w betonie [75]. Natomiast wywołanie ekspansji przez dostarczanie z zewnątrz wody do rdzeni betonowych wyciętych z konstrukcji, w której zachodzi reakcja alkaliów z krzemionką może posłużyć do oszczadzania ekspansji w funkcji dopływu wilgoci ze środowiska zewnętrznego. Diamond [77] uważa, że ekspansja może zachodzić przy całkowitym braku sorpcji wilgoci z otoczenia, a woda pochłaniana przez żel krzemianów sodu i potasu może być roztworem kapilarnym.

Potwierdzają to także obserwacje betonu o znanej wilgotności (rys. 2.25), który zabezpieczono przed dopływem wilgoci z zewnątrz, a mierzona ekspansja po jednym roku była największa przy jego wilgotności wynoszącej 6%, natomiast przy wilgotności mniejszej od 4,5% ekspansja była niewielka. Najszybszy wzrost ekspansji wiązał się z najmniejszym przyrostem masy betonu (rys. 2.26).

Rys. 2.24. Wpływ wilgotności względnej na ekspansję bełcek betonowych [74]
Rys. 2.25. Ekspansja betonu o różnej wilgotności [78]

Rys. 2.26. Zależność między ekspansją a zmianą masy betonu o różnej wilgotności [78]

Zależność pokazana na rysunku 2.26 może świadczyć o tym, że uwodniony żel krzemianu sodu i potasu powstaje bez dopływu wody z otoczenia, a woda absorbowana przez fazy powodujące ekspansję pochodzi z roztworu w porach betonu. Jednak zawartość wilgoci w betonie musi być odpowiednia.
2.3.2. Skład roztworu w porach zaczynu

Analiza składu roztworu w porach zaczynów cementowych jest bardzo ważna dla zrozumienia i kontroli reakcji alkalia-kruszywo. Znaczny postęp w badaniu składu roztworu w porach związany jest z zastosowaniem urządzeń do wyciskania roztworu ze stwardniałych zaczynów cementowych, zapraw czy betonów, przy zastosowaniu ciśnienia o wartości kilkuset MPa [79]. Objętość wyciskniętego roztworu z porów obejmuje reprezentatywną, ale małą część fazy ciekłej zawartej w zhydratyzowanym zaczynie cementowym, co stanowi o niedoskonałości stosowanej metody. Uważa się jednak tę metodę za wystarczająco pewną dla analizy roztworu z porów dojrzałego zaczynu cementowego [80]. Wyciskanie roztworu pod wysokim ciśnieniem z porów stwardniałych betonów jest bardzo trudne. Stąd coraz częściej stosuje się alternatywny sposób określania zawartości alkaliów w porach betonu przez ich ekstrakcję ze zmielonego betonu gorącej wodą. Określając gęstość betonu i zawartość fazy ciekłej w betonie można obliczyć zawartość alkaliów aktywnych w 1 m³ betonu [81]. Reakcja alkaliów z krzemionką jest wynikiem oddziaływania na kruszywo obecnych w roztworze jonów, stąd śledzenie zmian ich stężeń w fazie ciekłej zaczynu jest ważne dla oceny przebiegu i zasięgu reakcji [82]. Skład fazy ciekłej zaczynu z cementu o dużej zawartości alkaliów (Na₂Oₑ = 0,91%, w/c = 0,5) w pierwszej dobie hydratacji przedstawiono na rysunku 2.27 [83]. Równocześnie stwierdzono, że jony glinu, żelaza i krzemionki występują w ilościach śladowych.

![Rys. 2.27. Zmiany stężenia wybranych jonów w roztworze wypełniającym pory w zaczynie cementowym, w pierwszym dniu hydratacji [83]](image-url)
Podczas pierwszych kilku godzin roztwór w porach składa się głównie z siarczanów sodu i potasu (Na⁺, K⁺ i SO₄²⁻), jednak powstawanie faz zawierających siarczan (monosiarczanoglinian i ettringit) w tym czasie powoduje zmniejszenie stężenia jonów siarczanowych w roztworze. Od pierwszego dnia hydratacji roztwór w porach składa się prawie całkowicie z jonów sodu, potasu i jonów wodorotlenowych. Stężenie jonów wapnia utrzymuje się początkowo na poziomie około 0,02 mola na litr w ciągu pierwszych kilku godzin, a następnie pod koniec pierwszego dnia zmniejsza się do około 0,005 mola na litr. Jony sodu i potasu mają początkowo dużo większe stężenie, około 0,42 mola na litr dla K⁺ i 0,13 mola na litr dla Na⁺. W przeciwieństwie do spadku stężenia jonów Ca²⁺, stężenie jonów sodu i potasu zwiększa się w czasem, początkowo powoli w pierwszych 5 godzinach, a później szybciej. Z końcem pierwszego dnia stężenie K⁺ może osiągać 0,52 mola na litr, a stężenie Na⁺ 0,2 mola na litr [85].

Interesujące są wartości stężeń anionów. Stężenie jonu siarczanowego w tym roztworze jest bardzo duże – 0,4 mola na litr [84], o wiele większe niż spodziewane dla produktu rozpuszczania gipsu. Wartość ta jest utrzymywana przez około 5 godzin, potem następuje początek szybkiego spadku stężenia jonów siarczanowych. W tym samym czasie stężenie jonu OH⁻, które jest mniej więcej niezmienne i wynosi około 0,17 mola na litr, zaczyna szybko wzrastać. Stężenia anionów po 5 godzinach od początku hydratacji odzwierciedlają stan, w którym rozpoczyna się wytrącanie ettringitu, wiążącego jony siarczanowe, zaś jony OH⁻ oddawane do roztworu utrzymują równowagę między anionami a kationami. Po około 24 godzinach stężenie jonów OH⁻ zwiększa się do około 0,6 mola na litr, a stężenie SO₄²⁻ spada poniżej 0,14 mola na litr. Po jednej dobie roztwór zawiera głównie rozpuszczone wodorotlenki sodu i potasu z niewielką tylko ilością innych składników [80]. Stężenia wodorotlenków alkaliów mogą nieco wzrastać w ciągu kilku następnych tygodni, jeżeli dodatkowe ilości alkaliów są uwalniane z faz cementowych, a woda jest wiązana przez produkty hydratacji. Stężenia K⁺, Na⁺, OH⁻ utrzymują się na wysokim poziomie i faza ciekła staje się w zasadzie roztworem wodorotlenków sodu i potasu [83]. Taylor [33] podaje, że typowe stężenia wynoszą dla: Na⁺ – 0,05-0,2 mola na litr; K⁺ – 0,2-0,5 mol na litr, pH – 13,4-13,8. Stężenia te utrzymują się na niezmienionym poziomie przez bardzo długi okres. Stężenie jonów SO₄²⁻ w większości zaczyńnych spada prawie do zera, a stężenie jonów OH⁻ wzrasta równowagowo do stężeń jonów sodu i potasu. Dlatego roztwór wypełniający pory jest w zasadzie stężonym roztworem wodorotlenków sodu i potasu zawierającym niewielkie ilości jonów wapnia i niezwykle mało jonów krzemianowych [85, 86].
2.3.3. Skład roztworu w porach zaprawy i betonu

Porównanie składu roztworu w porach zapraw i zaczynów cementowym z tych samych cementów dla w/c = 0,5 wykazuje, że stężenie jonu hydroksylowego w roztworze w porach zaczynu jest wyraźnie wyższe (rys. 2.28) [87]. Natomiast stężenia jonu hydroksylowego w roztworze w porach zaprawy czy betonu dojrzewających w podobnych warunkach i z tą samą zawartością alkaliów w cemencie i wody (w/c), są podobne.

Rys. 2.28. Stężenie jonu hydroksylowego w roztworze w porach zaczynów i zapraw o w/c = 0,5 po 84 dniach dojrzewania w temperaturze 20°C [87]

Zależność stężenia jonu hydroksylowego w roztworze wypełniającym pory zapraw i zaczynów zarówno po 30, jak i po 180 dniach w funkcji zawartości alkaliów w cemencie jest zależnością liniową (rys. 2.29) [88].

Zawartość sodu i potasu w cemencie portlandzkim ma duży wpływ na ich stężenie w roztworze w porach zaczynu. Należy zwrócić uwagę, że stężenie jonów OH⁻ może się w zakresie od około 0,15 M – dla cementu o małej zawartości sodu i potasu do około 1,00 M – dla większych zawartości; roztwór ten ma pH w zakresie od 13,2 do 14 (rys. 2.29). Podobny skład roztworów wypełniających pory w zaprawach o różnej zawartości alkaliów z kruszywem nierеaktywnym przedstawili
Struble i Diamond [89]. Stężenia sodu i potasu zmieniały się w poszczególnych roztworach od 0,322 do 0,965 mola na litr, w zależności od zawartości tlenków w cemencie. Wartość pH roztworów wynosiła od 13,4 do 14,0, z tym że faza ciekła w zaprawach z cementami o małej zawartości alkaliów miała pH mniejsze od 13,6, a z cementami o dużej zawartości alkaliów większe od 13,6.

![Rys. 2.29. Stężenie jonu OH⁻ w roztworze wypełniającym pory w zaczynach i zaprawach o w/c = 0,5 w funkcji zawartości sodu i potasu w cemencie [88]](image)

Przy braku dopływu wilgoci i zmian wywołanych innymi reakcjami stężenie wodorotlenków sodu i potasu nie zmieniało się i odzwierciedlało ich zawartość w cemencie, i udział cementu w betonie. Duschesne i Berube [90] zanotowali większe stężenia alkaliów w roztworze w porach zaczynu cementowego, a stężenie jonu hydroksylowego w przypadku cementu o dużej zawartości alkaliów (Na₂Oe = 1,05%) wynosiło 0,689 mol na litr po 7 dniach dojrzewania zaczynu i wzrosło do 0,92 mola na litr po 545 dniach hydratacji. Z zależności pokazanej na rysunku 2.29, przynajmniej w przypadku betonów o w/c = 0,5, można oszacować stężenie jonów OH⁻ w fazie ciekłej. Ponieważ stężenie jonu OH⁻ jest zwykle równe sumie stężeń jonów sodu i potasu (w granicach błędu doświadczalnego), daje to stężenie wodorotlenku sodu i potasu, które mogą reagować z krzemionką w betonie. Jednakże stosunek sodu do potasu w roztworze waży się zależnie od ich stosunku w cemencie. Dostępne dane dla zaczynów i zapraw o innym w/c wykazują, że prosta przedstawiona na rysunku 2.29 może być wykorzystana także do oceny stężeń wodorotlenków sodu i potasu, jeśli uwzględnili się wpływ wzrostu w/c na ich stężenie. Potwierdzają to wyniki badań Diamonda [91] dla zaczynów o innym w/c, przy założeniu, że stężenia zmieniają się liniowo z różnicą w/c. Zależność ta odnosi się do zaczynów, zapraw czy betonów,
bez dodatkowych składników. Przewidywane stężenia wodorotlenku sodu i potasu mogą być większe, jeśli beton został znacznie wysuszony. Te wyniki doświadczalne znalazły potwierdzenie w teoretycznych obliczeniach przeprowadzonych przez Taylora [92], który obliczył przewidywane stężenie jonów sodu i potasu w roztworze w porach, przy założeniu, że przechodzą do roztworu zaawansowane cementu. Stwierdził on, że tylko 42% alkaliów występuje w roztworze w porach, a pozostała ilość jest związana w produktach hydratacji. Z kolei Berube i inni [93] wykazali, że gdy hydratacja jest zakończona około 40% alkaliów znajduje się w produktach hydratacji i dlatego nie mogą one brać udziału w reakcji z kruszywem. Rozbieżności w obserwowanych stężeniach wynikają z faktu, że w betonach poziom stężenia wodorotlenków sodu i potasu w roztworze wypełniającym pory zależy od wielu czynników, a przede wszystkim od ich zawartości w cementie, udziału cementu w betonie i stosunku w/c w mieszance betonowej.

W zasadzie po długim okresie zawartość alkaliów w roztworze wypełniającym pory zmierza do wartości bliskich 70-80% całkowitej ich zawartości w cementie. Z czasem, przy większym udziale zhydratyzowanych faz cementowych, mniej pozostaje fazy ciekłej, stąd obserwuje się zwiększone stężenie sodu i potasu. Gdy nie suszy się betonu lub nie stosuje innych zabiegów można oczekiwać, że stężenie alkaliów w roztworze wypełniającym pory będzie się zmieniać od około 0,35 mola na litr – w przypadku betonu z cementu o małej zawartości alkaliów do nieco ponad 1 mol na litr – dla betonu z cementu o dużej zawartości alkaliów i przy małej zawartości wody. Suszenie może powodować, że w betonie zaobserwuje się lokalne stężenia wyższe niż stężenia średnie [88]. Większość wyników badań wykazuje, że z upływem czasu hydratacji zawartość alkaliów zmniejsza się.

W wielu krajach jedyną metodą zapobiegania reakcji alkaliów z krzemionką jest ograniczenie całkowitej ich zawartości w betonie. W porównaniu z wcześniej przedstawioną metodą stosowania cementu o małej zawartości sodu i potasu i ograniczeniem całkowitej ich zawartości w betonie, ograniczenie to uwzględnia nie tylko ich zawartość w cementie, ale także ilość cementu w mieszaninie betonowej, a także inne potencjalne źródła alkaliów, na przykład pochodzących z kruszywa. Znaczenie granicznej zawartości dla składu roztworu w porach betonu było przedstawione przez Canhama [87].

2.3.4. Wpływ zawartości wody na skład fazy ciekłej

Stężenie jonu hydroksyloogowego w roztworze w porach betonu jest proporcjonalne do zawartości sodu i potasu w cementie (rys. 2.30) [87]. Wskazuje to na wpływ zawartości wody w betonie na wielkość stężenia jonu hydroksyloowego w roztworze w porach betonu [94].
Małe w/c zmienia skład roztworu w porach betonu, gdyż powodując zmniejszanie jego zawartości zwiększa stężenie alkaliów w tym roztworze oraz jego pH. Równanie, które w przybliżeniu opisuje tę zależność ma według Lagerblada [94] następującą postać:

$$ (\text{OH}^-) = \frac{0,339 \cdot \text{Na}_2\text{O}_e [\%]}{w/c} + 0,022 \pm 0,06 \ [\text{mol/l}] \quad (2.5) $$

gdzie:
Na$_2$O$_e$% – równoważnik sodowy całkowitej zawartości sumy Na$_2$O i K$_2$O w cementie,
(\text{OH}^-) – stężenie jonów wodorotlenowych w roztworze.

Stężenie jonów OH$^-$ (pH) zwiększa się z zawartością Na$_2$O$_e$ w cementie przy zmniejszeniu współczynnika w/c, co może stwarzać niebezpieczeństwo wystąpienia reakcji alkaliów z krzemionką. Nie potwierdzają tego przedstawione na rysunku 2.31 krzywe pokazujące, że beton zawierający kilka procent opalu przy w/c = 0,44 bardzo szybko zwiększa ekspansję, natomiast beton z małym w/c = 0,28 może być uważany za bezpieczny. Przy dużej zawartości cementu i małym w/c w betonie, prawdopodobnie duża wytrzymałość betonu przeciwdziała naprężeniom związanym z reakcją alkaliów z krzemionką i ekspansja nie występuje [94].
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Rys. 2.31. Ekspansja betonu z kruszywem zawierającym kilka procent opalu przy normalnym i małym stosunku w/c [94]

Skład roztworu wypełniającego pory zmienia się w zależności od w/c (rys. 2.32). Stężenie jonów sodu i potasu, jonów wapnia i jonów wodorotlenowych przy jednakowym w/c było takie samo po 30 dniach dla zaczynów i zapraw. Zwiększając w/c w zakresie od 0,3 do 0,7 zmniejsza się stężenie jonów sodu, potasu i wodorotlenowych, a zwiększa stężenie jonów wapnia – jest to tak zwany efekt wspólnego jonu [96]. Przy największym w/c wynoszącym 0,7 stężenie jonów sodu i potasu wynosiło 300 mmoli na litr i było wystarczające do wystąpienia ich reakcji z krzemionką zgodnie z danymi literaturowymi [89].

Rys. 2.32. Stężenie jonów (\(Na^+ + K^+\)) w roztworze wypełniającym pory zaczynu (białe kółka i trójkąty) i zaprawy (czarne kółka i trójkąty) w zależności od w/c [95]
2.3.5. Wpływ reakcji alkaliów z krzemionką na skład fazy ciekłej

W wielu pracach stwierdzono znaczne zmiany składu roztworów wypełniających pory betonu, w których zaszła reakcja alkaliów z krzemionką w porównaniu z roztworami w identycznych betonach, lecz nie zawierających kruszywa reaktywnego [77]. Przeważnie obserwuje się zmniejszenie stężenia wodorotlenków sodu i potasu w roztworze w porach betonu z kruszywem reaktywnym, lecz występują znaczne różnice dotyczące ilościowych zmian tych stężeń. Diamond [96] znalazł zmniejszenie sumarycznego stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy z reaktywnym opalem z 0,8 do około 0,35 mol/litr po 150 dniach, czyli jeszcze przed osiągnięciem trwałego stężenia. W innym przypadku już po 28 dniach w roztworze w porach betonu występowała różnica między całkowitą zawartością Na₂O₆ wprowadzonych do tego betonu z cementem a ich zawartością w roztworze, i na tej podstawie ustalono, że około 40% Na₂O₆ zostało związane przez hydraty cementowe w okresie, w którym nie utworzyły one jeszcze żelu w wyniku reakcji alkaliów z krzemionką [72]. Po dłuższym czasie hydratacji w betonach z niereaktywnym kruszywem zawartość alkaliów w roztworze w porach betonu utrzymuje się na stałym poziomie, co wskazuje na ustalenie się równowagi (rys. 2.33) [77].

Natomiast w betonach z kruszywem reaktywnym przeciętna zawartość alkaliów zmniejsza się o dalsze 28%, między 4 a 52 tygodniem dojrzewania (rys. 2.34).
![Rys. 2.34. Zmiana stężenia alkaliów rozpuszczalnych w betonach z kruszywem o różnej reaktywności w zależności od czasu (powyżej średniej, zawartość ilości alkaliów rozpuszczalnych w betonach z kruszywem nieraktywnym, poniżej średniej zawartość alkaliów w betonach z kruszywem reaktywnym) [81]

Agresywność roztworu w porach betonu w stosunku do kruszywa jest zależna przede wszystkim od stężenia jonów sodu i potasu. Średnie stężenie jonów sodu i potasu po 28 dniach, gdy powstaje niewielka ilość żelu uwodnionego krzemianu, osiąga stężenie wynoszące 0,84 mola/litr [85]. W betonach z kruszywem nieraktywnym stężenie alkaliów ma tendencję do zwiększania się z czasem, jako wynik ich dalszego rozpuszczania i zmniejszania się zawartości wolnej wody. Z kolei w przypadku betonów z kruszywem reaktywnym stężenie jonów sodu i potasu zmniejsza się wyraźnie w roztworze w porach betonu. Także o wiązaniu alkaliów przez żel uwodnionego krzemianu sodu i potasu w wyniku reakcji alkaliów z krzemionką świadczy zmniejszające się pH roztworu w porach betonu, co stwierdził Goguel [98]. Z przedstawionych na rysunku 2.35 składów roztworu wypełniającego pory w zaprawie z reaktywnym kruszywem [98] widać, że z upływem czasu od 1 tygodnia do 6 miesięcy stężenie wodorotlenków sodu i potasu szybko się zmniejsza, ponieważ jony te są wiązane w żelu powstającym w reakcji alkaliów z krzemionką. W tych zmianach zachodzi wyraźne zróżnicowanie w zależności od reaktywności zastosowanego kruszywa; dla kruszywa reaktywnego (andezyt) stężenie alkaliów zmniejsza się w większym stopniu, co świadczy o tym, że alkalia są wiązane przez uwodniony krzemian. W zaprawie z kruszywem reaktywnym stężenie jonów hydroksylovych w roztworze wypełniającym pory zależy od stężenia jonów sodu i potasu, i po 6 miesiącach osiąga ono stałą wartość (pH około 12,6), a więc odpowiada nasyconemu roztworowi Ca(OH)₂.
Stężenia alkaliów w fazie ciekłej pobranej bezpośrednio z próbek betonu z kruszywem reaktywnym po kilku latach jego dojrzewania były o wiele mniejsze niż stężenia w fazie ciekłej zaczynów. Jony sodu i potasu z roztworów wypełniających pory w betonach zostały prawdopodobnie związane w uwodnionym krzemianie powstającym w wyniku reakcji alkaliów z krzemionką, a beton nawet w przypadku małej ekspansji, wykazywał znaczny spadek stężenia jonów sodu i potasu w stosunku do stężenia tych jonów w fazie ciekłej zaczynu. We wszystkich zaprawach z kruszywem reaktywnym (piasek kwarcowy z dodatkiem 6% masowych opalu) obserwuje się zmniejszenie stężenia wodorotlenków sodu i potasu w roztworze w wyniku postępującej reakcji alkaliów z krzemionką. Zmiana stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy z kruszywem reaktywnym w zależności od czasu ma podobny przebieg (rys. 2.36).

Stwierdzone zmiany składu roztworu w porach badanych zapraw są zbliżone do oznaczanych przez Berube i współautorów [81] w przypadku kruszyw reaktywnych. Zmniejszenie stężenia wodorotlenków sodu i potasu w roztworze zmienia się między pierwszym a dwudziestym ósmym tygodniem o 28% w przypadku cementu zawierającego 0,35% Na₂O e i o 45% w zaczynie z cementu zawierającego 1,5% Na₂O e (rys. 2.37). Wiąże się to z szybszym przebiegiem reakcji przy większej zawartości alkaliów, następnstwem której jest powstawanie uwodnionego krzemianu sodu i potasu, i spadek ich stężenia w fazie ciekłej. Zmniejszenie stężenia alkaliów i jonów hydroksylowych wykazuje, że reakcja alkaliów z krzemionką miała miejsce.
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

Rys. 2.36. Zmiana stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy z kruszywem reaktywnym i cementów różniących się zawartością Na₂O₉, w funkcji czasu [99]

Rys. 2.37. Zmiana stężenia NaOH i KOH w fazie ciekłej w zaprawie i w zaczynie z cementu zawierającego 1,1 Na₂O₉, w zależności od czasu [100]

Analiza roztworu wypełniającego porę w połączeniu z zawartością alkaliów związanych przez fazy stałe zaczynu i wyjściową zawartością alkaliów wykazały, że duża część alkaliów (~30%) może być związana przez hydraty w zaczynie.

Postępująca hydratacja cementu wiąże się również ze zmniejszeniem zawartości wody wolnej, a więc fazy ciekłej, co będzie powodować, pomimo wiązania alka-
Korozja wewnętrzna betonu

92

liów przez produkty hydratacji, że ich stężenie nie będzie ulegało zmniejszaniu, jak to ma miejsce w przypadku zaczynu (rys. 2.37). Natomiast w przypadku reakcji alkaliów z krzemionką widoczne zmniejszenie zawartości wodorotlenków sodu i potasu w fazie ciekłej w zaprawie jest związane z tworzeniem się żelu krzemianu potasowo-sodowo-wapniowego. W przeprowadzonych badaniach zauważono, że z upływem czasu reakcji następuje zmniejszenie zawartości wodorotlenków sodu i potasu w roztworze w porach zaprawy. Po 26 tygodniach tylko w zaprawie z cementem o najmniejszej zawartości alkaliów stężenie wodorotlenków sodu i potasu wynosiło 0,192 mola/litr i było mniejsze niż 0,250 mola/litr, które jest uważane za wystarczające do zajścia reakcji alkaliów z krzemionką. Natomiast we wszystkich pozostałych zaprawach zawartość alkaliów w fazie ciekłej po sześciu miesiącach była na tyle duża, że reakcja mogła dalej przebiegać.

Przedstawiony na rysunku 2.38 diagram zawartości alkaliów (po przeliczeniu na Na₂O) w roztworze w porach analizowanych zapraw po dwunastu tygodniach wykazuje, że w zaprawach z cementami zawierającymi tylko 0,3% alkaliów, zawartość alkaliów w fazie ciekłej jest mniejsza niż graniczna – 1,8 kg/m³. Natomiast we wszystkich pozostałych zaprawach zawartość alkaliów jest nadal na tyle duża, że reakcja alkaliów z kruszywem może dalej zachodzić. Znajduje to odzwierciedlenie w wielkości mierzonych odkształceń próbek zaprawy.

Rys. 2.38. Zawartość alkaliów w roztworze w porach zaprawy z kruszywem reaktywnym w zależności od ich zawartości w cementie [101]
2.3.6. Wpływ składu roztworu w porach na ekspansję zaprawy

Właściwości пуczenie zaprawy spowodowane postępującą reakcją alkaliów z krzemionką zależą od stężenia jonów sodu i potasu, i jonu hydroksylowego w fazie ciekłej. Potwierdzają to badania zależności ekspansji zapraw wywołanej reakcją alkaliów z krzemionką od stężenia jonów sodu i potasu i hydroksylowych w roztworze w porach prowadzone przez Diamonda i współautorów [77], czy późniejsze badania Seno [98] przedstawiające zależność zmian ekspansji w czasie i zmniejszenie stężenia jonów sodu i potasu w roztworze wypełniającym pory w betonach w przypadku reakcji alkaliów z krzemionką (rys. 2.39).

Rys. 2.39. Zmiany stężenia wodorotlenków sodu i potasu w fazie ciekłej i ciśnienia ekspansji zaprawy z andezytu, w zależności od czasu [98]

W początkowym okresie ciśnienie ekspansji jest względnie niska, ale później wzrasta stopniowo (nawet po 6 miesiącach), natomiast zmniejszenie stężenia jonów sodu i potasu osiąga maksimum po 4 tygodniach i jest tym większe, im większe była zawartość całkowita alkaliów w cemencie. Początkowe zmniejszenie stężenia jonów sodu i potasu w porach betonu odpowiada etapowi pierwszemu (według Diamonda [88]), w którym tworzy się żel krzemianu sodowo-potasowego, wiążący w swojej strukturze jony sodu i potasu. Wzrost ciśnienia w tym etapie wynika z tworzenia tego żelu w reakcji alkaliów z krzemionką w przestrzeni ograniczonej przez stwardniały zaczyn cementowy. W etapie drugim zmiana ciśnienia ekspansji jest związana z absorpcją wody przez żel.

Przedstawione na rysunkach 2.40 i 2.41 wyniki badań zmian liniowych zaprawy w czasie i towarzyszące im zmiany stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy wykazują, że jony są wiązane przez żel krzemianu sodowo-potasowego powstający w reakcji i w następstwie zachodzącego procesu obserwowana jest ekspansja zaprawy. Wiązanie alkaliów w reakcji z kruszywem
jest tym większe, im więcej sodu i potasu było w cemencie, a przebieg reakcji był szybszy, o czym świadczy zmierzona wielkość ekspansji.

**Rys. 2.40.** Porównanie zmian stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy i jej zmian liniowych (Na$_2$O$_c$ = 0,3%), w zależności od czasu [102]

**Rys. 2.41.** Porównanie zmian stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy i jej zmian liniowych (Na$_2$O$_c$ = 1,5%), w zależności od czasu [102]
Cement zawierający więcej sodu i potasu wytwarza więcej żelu uwodnionego krzemianu powstającego w reakcji, o czym świadczy zmniejszone stężenie wodorotlenków sodu i potasu w roztworze w porach zaprawy i większa ekspansja. Zależności te są zgodne z obserwacjami Seno [98], w których zmniejszenie stężenia jonów sodu i potasu w roztworze w porach betonu (rys. 2.42), będące następstwem postępującej reakcji tych jonów z krzemionką, jest tym większe, im więcej Na$_2$O jest w zaprawie. Natomiast gdy wzrasta szybkość spadku stężenia alkaliów w fazie ciekłej wzrasta także ciśnienie ekspansji.

Rys. 2.42. Zależność ciśnienia ekspansji w zaprawach z cementów o zróżnicowanej zawartości Na$_2$O i kruszyw o różnej reaktywności w funkcji zmniejszenia stężenia jonów sodu i potasu w fazie ciekłej [98]

Oznaczenie zmian stężenia jonów alkaliów w roztworze w porach betonu może służyć do oszacowania reaktywności kruszywa i stopnia ekspansji zaprawy.

Przedstawiona na rysunku 2.43 zależność zmian stężenia wodorotlenku sodu i potasu w roztworze w porach betonu z kruszywami reaktywnymi w funkcji ekspansji betonu wywołanej reakcją alkaliów z krzemionką wykazuje, że stężenia tych wodorotlenków zmniejszają się z czasem reakcji. Zmniejszenie stężenia wodorotlenków sodu i potasu w fazie ciekłej betonu jest tym większe im kruszywo jest bardziej reaktywne, o czym świadczy wielkość ekspansji. Podobną zależność dotyczącą ekspansji i zmiany stężenia jonów wodorotlenowych w roztworze w porach betonu w zależności od czasu przedstawiono na rysunku 2.44.

W ciągu pierwszych trzech miesięcy stężenie jonu wodorotlenowego pozostającego w równowadze z jonami Na$^+$ i K$^+$ wzrasta; w tym czasie nie obserwuje się zmian liniowych zaprawy. Po tym czasie, stężenie jonów wodorotlenowych w roztworze w porach betonu osiąga maksimum, a następnie zmniejsza się w wyniku
wiązania alkaliów przez uwodniony żel, natomiast ekspansja związana z reakcją alkaliów z krzemionką rośnie.

**Rys. 2.43.** Zmiana stężenia wodorotlenków sodu i potasu w roztworze w porach zaprawy z kruszywa o różnej reaktywności w funkcji ekspansji po jednym roku [81]

**Rys. 2.44.** Przebieg ekspansji zaprawy i zmiana stężenia jonów OH⁻ w roztworze w porach zaprawy z kruszywem wulkanicznym [97]

Wpływ zawartości alkaliów w betonie na ekspansję beleczek betonowych przechowywanych nad wodą w temperaturze 38°C przez jeden rok przedstawiono na rysunku 2.45. Mieszanki betonowe były wytwarzane z reaktywnym, zsylifikowanym wapieniem i różną zawartością cementu (od 275 do 450 kg/m³) o szerokim zakresie zawartości sodu i potasu (od 0,67 do 1,40% Na₂Oₑ).
Z danych wynika, że ekspansja betonu z reaktywnym kruszywem jest zależna od zawartości alkaliów w betonie. Szkodliwej ekspansji bełczek betonu zawierającego kruszywo reaktywne można zapobiegać, jeśli zawartość alkaliów w betonie będzie utrzymana na poziomie niższym niż 3,0 kg/m³ Na₂Oₑ. Ekspansja może wystąpić w betonie o zawartości sodu i potasu mniejszej od niezbędnej do spowodowania ekspansji w badaniach laboratoryjnych. Powodem tego jest możliwość wypłukiwania części alkaliów, podczas badań bełczek betonowych dojrzewających w laboratorium nad wodą [103]. Spostrzeżenie to potwierdza obserwowana ekspansja i pękanie powierzchniowe bloków betonowych z tego kruszywa (0,6 x 0,6 x 2,0 m), dojrzewających w warunkach polowych oraz zawierających tylko 1,9 kg/m³ Na₂Oₑ [104]. Zawartość alkaliów w betonie może zwiększać się w pewnych obszarach podczas eksploatacji w wyniku migracji alkaliów spowodowanej przemieszczaniem się wilgoci, penetracją alkaliów ze środowiska zewnętrznego (np. soli odludzających) lub długotrwałym uwalnianiem alkaliów z kruszywa. Czynniki te powinny być brane pod uwagę przy ustalaniu granicznych zawartości alkaliów w betonie zawierającym kruszywa reaktywne.

**Literatura**


2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

[74] Pedneault A., *Development of testing and analytical procedures for the evaluation of the residual potential of reaction, expansion, and deterioration of concrete affected by ASR*, MSc memoir, Laval University, Quebec City 1996, p. 133.
2. Czynniki wpływające na przebieg reakcji alkaliów z krzemionką

[99] Owsiak Z., Wpływ reakcji alkaliów z krzemionką na trwałość betonu, Materiały IV Konferencji „Zagadnienia Materiałowe w Inżynierii Lądowej”, ATBUD’2003, s. 306-313.


Reakcja alkaliów z węglanami

W Ameryce Północnej w końcu lat 40. XX wieku opisano wiele przypadków zniszczenia betonu zawierającego kruszywo węglanowe. Swenson [1] w roku 1957 wykazał, że przyczyną jest pęcznienie kruszywa węglanowego w wyniku reakcji z alkaliami zawartymi w cemencie. Od tego czasu, uszkodzenia spowodowane tą reakcją stwierdzono w niewielu krajach, głównie w USA.

Reakcja alkaliów z węglanami jest reakcją wodorotlenków sodu i potasu zawartymi w roztworze w porach betonu i kruszywami z niektórych skał węglanowych, w szczególności zdolomityzowanych wapieni i dolomitu. Reakcji zwykle towarzyszy rozkład i ekspansja ziaren kruszywa, co prowadzi do nadmiernej ekspansji i pękania betonu podczas użytkowania. Uszkodzenia w następstwie reakcji alkaliów z węglanami w betonie są znacznie mniejsze niż w przypadku reakcji alkaliów z krzemionką, a zatem zainteresowanie tą reakcją jest znacznie mniejsze. Mechanizm ekspansji nie jest jednoznaczny [2]. Objawy reakcji alkaliów z węglanami w konstrukcjach betonowych są podobne do tych obserwowanych w konstrukcjach z reakcją alkaliów z krzemionką.

3.1. Rodzaje reaktywnych kruszyw węglanowych

Reaktywne w obecności alkaliów skały węglanowe mają podobny skład i teksturę. Z grupy skał węglanowych najbardziej podatne na reakcję z alkaliami są zdolomityzowane wapienie z ponad dwuprocentową domieszką mineralów ilastych, o bardzo drobnoziarnistej teksturze. Jeżeli ilość mineralów ilastych jest mniejsza, to mimo cech kruszywa świadczących o jego podatności na reakcję z alkaliami, ekspansja nie występuje. Reaktywne skały zawierają kryształy dolomitu, rozproszone w matrycy zbudowanej z mineralów ilastych i pelitu kalcytowego [3, 4]. Wapienie te w większości mają dobre właściwości fizyczne, przede wszystkim wytrzymałość, nasiąkliwość, gęstość, i z tego względu są stosowane do wytwarzania kruszywa do betonu.

Szybkość rozkładu dolomitu jest największa dla krystalitów o wymiarach mniejszych od 2 μm. Największą reaktywność wykazują skały węglanowe zawierające...
zbliżone ilości kalcytu i dolomitu oraz drobne, połączone ze sobą pory [5]. Na rysunku 3.1 przedstawiono mikrostrukturę typowej reaktywnej skały, zbudowanej z kryształów dolomitu otoczonych pelitem z węglanu wapnia z domieszką minerałów ilastych. Występują także skały węglanowe o odmiennej teksturze, zawierające kryształy dolomitu w gruboziarnistej matrycy. Kruszywo z tych skał powoduje ekspansję betonu z opóźnieniem w porównaniu do kruszywa ze skał z matrycą pelitową.

Udział dolomitu w reaktywnym kruszywie wpływa na okres zachodzenia ekspan- sji. W USA znaleziono w różnych rejonach skały węglanowe, które różnią się przebiegiem ekspancji. Wczesna ekspancja wiąże się z mniejszą od około 30% zawartością części nierozpuszczalnych w HCl oraz dolomitu nieprzekraczającą 70% masy skały węglanowej. Opóźniona ekspancja występuje, gdy zawartość części nierozpuszczalnych jest większa od około 30%, a zawartość dolomitu przekracza 75% w skałę węglanowej. Skład ilościowy niektórych ekspansywnych skał węglanowych powodujących wczesną i opóźnioną ekspancję przedstawiono w tablicy 3.1.

**Tablica 3.1. Skład reaktywnych kruszyw węglanowych [3, 4]**

<table>
<thead>
<tr>
<th>Przebieg ekspansji</th>
<th>Zawartość części nierozpuszczalnych w HCl [%]</th>
<th>Zawartość dolomitu [%] w skałę węglanowej</th>
</tr>
</thead>
<tbody>
<tr>
<td>wczesna ekspansja [1, 6, 7]</td>
<td>od 5 do 15</td>
<td>około 50</td>
</tr>
<tr>
<td>wczesna ekspansja [8, 9]</td>
<td>od 10 do 20</td>
<td>od 40 do 60</td>
</tr>
<tr>
<td>wczesna ekspansja [10, 11]</td>
<td>od 13 do 29</td>
<td>od 46 do 73</td>
</tr>
<tr>
<td>opóźniona ekspansja [7]</td>
<td>od 21 do 49</td>
<td>od 75 do 87</td>
</tr>
<tr>
<td>opóźniona ekspansja [12]</td>
<td>33</td>
<td>&gt; 90</td>
</tr>
</tbody>
</table>
Rogers [13], porównując skład ekspansywnych i nieekspansywnych wapieni z doliny Ontario, zaobserwował, że ekspansja betonu z kruszywem węglanowym zmniejsza się zarówno dla wartości stosunku CaO : MgO poniżej 3, jak i dla wartości powyżej 12, przy jednoczesnej zawartości Al₂O₃ poniżej 6,5% w kruszywie.

**Rys. 3.2. Skład chemiczny kruszyw węglanowych przyjęty jako podstawa do określania potencjalnej reaktywności [14]**

Wyniki badań przedstawione na rysunku 3.2 mają ważne znaczenie poznawcze, lecz także mogą służyć do praktycznej oceny zagrożenia betonu ekspansją związaną z rozkładem dolomitu [14]. Wskazują one na podstawowe znaczenie zawartości dolomitu w kruszywie lub stopień dolomityzacji wapienia. Niestety nie łączą się one z wyjaśnieniem znaczenia zawartości minerałów ilastych, co jest podnoszone przez szereg autorów [17, 20, 21]. Charakterystyczna tekstura i skład kruszywa węglanowego są uważane za wiarygodną cechę określającą potencjalną jego reaktywność, klasyfikującą kruszywo do dalszej oceny w betonie [15, 16].
3.2. Reakcja wodorotlenków sodu i potasu z węglanami

Wysuwa się różne hipotezy wyjaśniające mechanizm ekspansji betonu z kruszywem węglanowym. Najbardziej rozpowszechnione dotyczą pęcznienia minerałów ilastych oraz powstawania ciśnienia osmotycznego [9, 17]. Hipotezy zakładają, że zjawisko to spowodowane jest reakcją wodorotlenków sodu i potasu, pochodzących z cementu z kruszywem, prowadzącą do rozkładu dolomitu. Schematycznie można zapisać tę reakcję następująco:

\[ \text{CaMg(CO}_3\text{)}_2 + 2\text{Na(K)OH} \rightarrow \text{CaCO}_3 + \text{Mg(OH)}_2 + (\text{Na, K})_2\text{CO}_3 \]  \hspace{1cm} (3.1)

Powstające podczas rozkładu dolomitu brucyt może osadzać się na powierzchni ziaren kruszywa w strefie przejściowej w zacynce cementowym lub wewnątrz ziaren kruszywa. Porowata strefa tworzona wokół ziarna kruszywa w następstwie uwalniania jonów magnezu osłabia wiązanie zaczyn-kruszywo. Pojawiające się pęknięcia, mogą być częściowo wypełniane poprzez wytrącaną węglan wapnia powstały w wyniku reakcji zawartego w zacynie wodorotlenku wapnia z węglanami sodu i potasu, co można zapisać schematycznie równaniem:

\[ (\text{Na, K})_2\text{CO}_3 + \text{Ca(OH)}_2 \rightarrow \text{CaCO}_3 + 2(\text{Na, K})\text{OH} \]  \hspace{1cm} (3.2)

Proces ten może zachodzić niezależnie od zawartości sodu i potasu w cemencie, bowiem mogą one pochodzić z kruszywa, którym mogą być przede wszystkim minerały ilaste. Potwierdzają to przypadki wykazujące, że cementy o małej zawartości sodu i potasu nie ograniczają szkodliwych następstw reakcji alkaliów z węglanami. Podobnie jak w przypadku reakcji alkaliów z krzemionką, reakcja alkaliów z węglanami uwarunkowana jest zawartością reaktywnego kruszywa, wodorotlenkami sodu i potasu oraz dostateczną wilgotnością betonu.

3.3. Mechanizm ekspansji w następstwie reakcji alkaliów z węglanami

Swenson [1] wykazał, że sam rozkład dolomitu nie wywołuje ekspansji. Reakcji rozkładu dolomitu pokazanej w równaniu (3.1) towarzyszy zmniejszenie objętości produktów występujących w fazach stałych. Sumaryczne objętości molowe \( \text{CaCO}_3 \) i \( \text{Mg(OH)}_2 \) są mniejsze niż objętość molowa \( \text{CaCO}_3 \cdot \text{MgCO}_3 \), a \( \text{Na}_2\text{CO}_3 \) pozostaje w roztworze, tak jak i \( \text{NaOH} \), nie występuje więc wzrost objętości [17]. Z tego względu rozkład dolomitu nie wyjaśnia przyczyn ekspansji związanej z reakcją alkaliów z węglanami.
Zaproponowano kilka hipotez wyjaśniających przyczyny ekspansji, które obejmują:

1. **Osmotyczny mechanizm ekspansji** – zaproponowany przez Hadley’a [9] oraz Swensona i Gillota [17]. Ciśnienie osmotyczne powstaje wokół kryształów dolomitu w matrycy skalnej [9, 18]. Jony sodu i potasu z roztworu w zaczynie migrują poprzez pory kruszywa do kryształów dolomitu, wywołując jego rozkład. Produkty reakcji, będące węglanami sodu, potasu i wapnia oraz brucyt, powstają wokół ziarna dolomitu. Węglan wapnia krystalizuje jako kalcyt, natomiast jony sodu i potasu oraz częściowo jony magnezu pozostają w roztworze otaczającym kryształy dolomitu. Matryca, zbudowana z minerałów iastych, pełni rolę błony pół-przepuszczalnej otaczającej te ziarna. Jest ona przepuszczalna dla cząsteczek wody, natomiast nie przepuszcza jonów magnezu, a takie jony sodu i potasu zostają uwięzione w celu zachowania równowagi ładunku elektrycznego. Zakłada się, że przez blonę nie mogą przechodzić jony większe od 0,8 nm, a jony magnezu w wyniku solwatacji w roztworze wodnym mają średnicę 1,1 nm. Ciśnienie osmotyczne jest wynikiem znacznie większego stężenia jonów w roztworze wokół ziaren dolomitu w porównaniu ze stężeniem panującym w roztworze betonu [18]. Wytworzenie ciśnienia osmotycznego jest spowodowane migracją cząsteczek wody i jonów sodu i potasu do ograniczonej przestrzeni zajmowanej przez pelit złożony z kalcytu i minerałów iastych, otaczający kryształy dolomitu [19, 20].


4. **Reakcja alkaliów z krzemionką** występującą w postaci kryptokrystalicznego kwarcu w matrycy otaczającej kryształy dolomitu [5, 24]. W zaprawach i beto-
nach, w których występowała reakcja alkaliów z węglanami zaobserwowano występowanie żelu uwodnionego krzemianu i przypuszczano, że za ekspansję jest odpowiedzialna reakcja kryptokrystalicznego kwarcu.

![Schemat powstawania warstewki brucytu i kalcytu wokół kryształów dolomitu](image)

**Rys. 3.3. Schemat powstawania warstewki brucytu i kalcytu wokół kryształów dolomitu [19]**

### 3.4. Czynniki zwiększające ekspansję

Niezależnie od reakcji alkaliów z węglanami występuje szereg czynników dodatkowych, które zwiększają pęcznienie betonów zawierających reaktywne wapieni dolomityczne. Są one związane ze składem mineralnym kruszywa węglanowego oraz jego cechami petrograficznymi [4], a mianowicie:

- zawierają od 5 do 25% mineralów ilastych lub części nierozpuszczalnych w HCl,
- stosunek zawartości kalcytu do dolomitu wynosi około 1:1,
- zawierają małe kryształy dolomitu (od 10 do 50 µm), tworzące gęsto upakowane objętości w ziarnach kruszywa.

Wymienia się także czynniki technologiczne mające wpływ na wzrost ekspansji [4]:

- zwiększona wielkość ziaren kruszywa grubego w betonie,
- znaczna wilgotność betonu,
- zwiększona zawartość sodu i potasu w betonie i zwiększone pH roztworu,
- zwiększony udział reaktywnych ziaren w kruszywie grubym,
- mała wytrzymałość betonu.

Oczywiście, jeśli ekspansja jest wynikiem reakcji alkaliów z krzemionką ilość i forma reaktywnej krzemionki będzie decydującym czynnikiem. Grattan-Bellew i inni [2] wykazali, że istnieje korelacja między ilością kwarcu w częściach nierozpuszczalnych a ekspansją beczek betonowych wytworzonych z trzech różnych wapieni reaktywnych.
3.5. Cechy charakterystyczne reakcji alkaliów z węglanami

Dyskusja dotycząca ekspansji betonu zawierającego kruszywa z reaktywnych wapien dolomitycznych z wrąbczeniami mineralów ilastych trwa i nadal nie ma po-wszechnie akceptowanej hipotezy wyjaśniającej. Jednak niezależnie od tego, czy ekspansja jest związana z reakcją alkaliów z węglanami, czy z krzemionką, są pewne właściwości, które rozróżniają kruszywa związane z występowaniem tych reakcji.

Reakcja alkaliów z węglanami w betonie ma następujące cechy charakterystyczne:

- ekspansja próbek laboratoryjnych lub uszkodzenia elementów betonowych w warunkach eksploatacyjnych rozpoczyna się po znacznie krótszym czasie niż w przypadku reakcji alkaliów z krzemionką;
- ekspansja rośnie ze zwiększeniem wielkości ziaren reaktywnego kruszywa;
- metody badań stosowane do wykrywania zagrożenia reakcją alkaliów z krzemionką (tj. badania beleczek z zaprawy [25], przyspieszone badanie beleczek zaprawy [26] i szybka metoda chemiczna [27]) nie są przydatne do badania reaktywności kruszywu węglanowych;
- ekspansja występuje w betonie w przypadku mniejszej zawartości sodu i potasu niż ogólne przyjęte za konieczną dla reakcji alkaliów z krzemionką;
- zastosowanie dodatków pucolanowych i granulowanego żwala wielkopiecowego na poziomie zwykle wystarczającym do ograniczenia reakcji alkaliów z krzemionką nie jest wystarczające w przypadku kruszyw podatnych na reakcje alkaliów z węglanami, nawet w połączeniu z cementem o malej zawartości sodu i potasu;
- związki litu nie eliminują ekspansji w reakcji alkaliów węglanowych w betonie. Zobserwowano nawet, że beleczki z betonu z reaktywnym kruszywem węglanowym zanurzone w roztworze LiOH, rozszerzają się w temperaturze 150°C [28];
- po wystąpieniu ekspansji obserwuje się małe ilości żelu uwodnionego krzemianu lub nawet jego brak. Stwierdzenie stosunkowo małej zawartości tego żelu nie wyjaśnia występowania dużej ekspansji.


Reaktywne kruszywa węglanowe mają typowy skład i mikroteksturę, a ekspansji betonu zwykle towarzyszy rozkład dolomitu. Nie ustalono jednoznacznie czy
3. Reakcja alkaliów z węglanami

Ekspansja jest związana bezpośrednio z reakcją rozkładu dolomitu, czy inne mechanizmy są jej przyczyną. Jedna ze szkół [2] wykazuje, że występująca reaktywna krzemionka w kruszywie z tych skał jest przyczyną ekspansji, będącej następowaniem reakcji alkaliów z krzemionką. Reaktywne kruszywa węglanowe mają wyraźnie różnice w właściwościach w porównaniu z kruszywami, które zawierają reaktywną krzemionkę. Z praktycznego punktu widzenia, ma ważne znaczenie, że kruszywa z reaktywnych skał węglanowych powodują ekspansję betonu zawierającego bardzo mało sodu i potasu (< 0,6% Na₂Oₑ), również w betonie ze stosunkowo dużą zawartością dodatków mineralnych (pucolany lub żużła). Uszkodzenia betonu spowodowane reakcją alkaliów z węglanami są podobne do spowodowanych reakcją z krzemionką. Jednak reakcja alkaliów z kruszywem węglanowym występuje stosunkowo rzadko, ponieważ stosowanie takich kruszyw nie jest tak powszechne i zazwyczaj nie służą one do produkcji betonu ze względu na właściwości mechaniczne, nie spełniające wymagań normowych.

Literatura


CSA, *Potential Expansivity of Aggregates (Procedure for Length Change Due to AAR in Concrete Prisms at 38°C)*, CSA A23.2-14A. A23.2-09, Canada 2009.


Metody zapobiegania reakcji alkaliów z krzemionką

Metody zapobiegania reakcji alkaliów z krzemionką w betonie obejmują: uni- kanie stosowania reaktywnego kruszywa, zmniejszenie zawartości alkaliów w betonie, zastosowanie dodatków mineralnych lub domieszek chemicznych zawierających związki litu. Metody zapobiegania reakcji alkaliów z krzemionką nie są na ogół skuteczne w ograniczeniu następstw reakcji alkaliów z węglanami, oczywiście poza wyeliminowaniem reaktywnego kruszywa węglanowego.

Znamy trzy podstawowe warunki konieczne dla wystąpienia uszkodzenia betonu w następstwie reakcji alkaliów z krzemionką:

- wystarczająca zawartość reaktywnej krzemionki w kruszywie,
- dostateczne stężenie wodorotlenków sodu i potasu (głównie z cementu portlandzkiego) w roztworze w porach w betonie,
- odpowiednia wilgotność betonu.

Brak któregokolwiek z tych czynników zapobiega występowaniu uszkodzeń w następstwie reakcji alkaliów z krzemionką. W większości budowli betonowych pełna ochrona przed dostępem wilgoci nie jest możliwa, a metody zapobiegania ekspansji spowodowanej reakcją alkaliów z krzemionką są następujące:

- unikanie stosowania kruszyw reaktywnych,
- zmniejszenie zawartości sodu i potasu w cementu portlandzkim.

Dwie kolejne metody to:

- zastosowanie dodatków mineralnych do cementu lub betonu,
- zastosowanie związki litu.

W rzeczywistości zastosowanie dodatków mineralnych jest również szczególnym przypadkiem zmniejszenia zawartości aktywnych związków sodu i potasu w cemente portlandzkim, natomiast związki litu powodują głównie zmiany właściwości ekspansywnych żelu uwodnionego krzemianu sodowo-potasowego.
4.1. Stosowanie kruszyw niereagujących z wodorotlenkami sodu i potasu


Mogą wystąpić warunki, w których zastosowanie kruszyw niereaktywnych jest trudne, a mianowicie:

- kruszywa niereaktywne nie występują w danym rejonie, a koszt dostawy kruszyw z innych obszarów jest wysoki,
- kruszywa reaktywne, które ze względu na inne właściwości mogą być stosowane do produkcji betonu zapowiadają znacznie mniejsze oddziaływania na środowisko,
- brak wyników badań niejednoznaczności, szczególnie gdy przeprowadzone np. różnymi metodami oznaczenia są rozbieżne.

W powyższych przypadkach konieczne jest zastosowanie innej metody zapobiegania reakcji alkaliów z krzemionką. Ponadto w przypadkach niektórych konstrukcji betonowych jest wymaganą szczególną ostrożność, nawet przy zastosowaniu kruszyw uważanych za niereaktywne. Dotyczy to konstrukcji o dużym znaczeniu, np. mostów lub elementów konstrukcyjnych narażonych na działanie agresywnego środowiska. Są to między innymi betonowe konstrukcje nadmorskie lub obiekty infrastruktury drogowej narażone na oddziaływanie soli odladzających, stanowiących z reguły zewnętrzne źródło chlorku sodu.

4.2. Ograniczenie zawartości sodu i potasu w betonie

jako bezpieczną zawartość sodu i potasu w cementie, nie uwzględnia jednak zawartości aktywnych alkaliów w kruszywie. Jednak w późniejszych badaniach wykazano wystąpienie niszczącej reakcji zarówno w badaniach laboratoryjnych, jak i eksploatacji konstrukcji betonowych przy zastosowaniu cementu o małej zawartości sodu i potasu [6, 7]. Przedstawiona na rysunku 4.1 zależność ekspansji betonowych belezek z kruszywa o różnej reaktywności, wykazuje, że zawartość alkaliów w betonie powodująca niszczącą ekspansję zawiera się w zakresie od 3 do 5 kg/m³ i zależy głównie od reaktywności kruszywa [8].

Rys. 4.1. Ekspansja belezek betonowych z kruszywa o różnym stopniu reaktywności w funkcji zawartości sodu i potasu (dojrzewanie w wodzie w temperaturze 38°C) [8]

Oznaczone zawartości alkaliów w eksploatowanych, uszkodzonych konstrukcjach były niejednokrotnie niższe od podawanych jako graniczne dla betonów z kruszywem reaktywnym [9]. Zawartość alkaliów w belezkach betonowych może zmniejszać się w wyniku ich wypłukiwania [8, 10]. Trzeba jednak zwrócić uwagę, że okres jednego roku jest stanowczo za krótki, zwłaszcza w świetle przyjmowanej ostatnio jako normę pięćdziesięciolatniego okresu trwałości konstrukcji betonowych. Taki okres trwałości jest między innymi wymagany w celu zapewnienia zrównoważonego stosowania betonu. Próbki betonowe z cementu o małej zawartości alkaliów (0,46% Na₂Oₑ) i całkowitej zawartości alkaliów w betonie wynoszącej 1,91 kg Na₂Oₑ/m³ wykazały po 8 latach ekspansję nie przekraczającą 0,04%. Natomiast elementy te w późniejszym okresie wykazały znaczne uszkodzenia wywołane reakcją alkaliów z krzemionką, a ekspansja po 20 latach wynosiła około 0,08%. Potwierdzają to wyniki doświadczeń Hootona i współautorów [11] oraz Mac Donalda i współautorów [12], co pokazano na rysunku 4.2.
Kruszywa stosowane w betonie, w którym zawartość Na₂O₆ nie przekracza wartości granicznej powodującej ekspansję, mogą powodować szkodliwą ekspansję, jeżeli zawartość alkaliów zwiększy się w niektórych obszarach elementów betonowych podczas użytkowania konstrukcji. Może to nastąpić poprzez zwiększenie stężenia alkaliów spowodowanego suszeniem, uwalnianiem alkaliów z kruszywa lub przedostaniem się alkaliów ze źródeł zewnętrznych, takich jak pole do usuwania oblodzenia [14]. Wzrost zawartości rozpuszczalnych alkaliów w betonie od 1,1 do 3,6 kg Na₂O₆/m³ blisko powierzchni niektórych obiektów autostradowych odnotował Stark [15]. Migracja alkaliów występująca we wczesnym okresie użytkowania elementów betonowych może być przyczyną uszkodzeń na powierzchni płyty betonowej, alkalia przechodząc z wodą z kierunku górnej powierzchni elementów, a odprowadzenie wody z powierzchni może zwiększać stężenie jonów sodu i potasu. Zwiększone stężenie alkaliów w tych obszarach prowadzi do reakcji alkaliów z krzemionką w warstwach powierzchniowych betonu, a tworzący się żel i jego ekspansja mogą doprowadzić do odprysków betonu. W niektórych badaniach wykazano sześciokrotne zwiększenie zawartości alkaliów w warstwie powierzchniowej w porównaniu do głębiej położonych warstw betonu [18]. Zjawisko to obserwowano nawet przy zastosowaniu cementu o małej zawartości sodu i potasu lub zastosowaniu dodatków wulkanizowanych [16].

W badaniach laboratoryjnych wykazano również migrację alkaliów spowodowaną różnicą wilgotności, stężeń, temperatury czy różnicą potencjałów elektrycz-

Reakcji alkaliów z krzemionką można zapobiegać poprzez zmniejszenie ich zawartości w betonie. W tablicy 4.1 zamieszczono graniczne zawartości alkaliów przyjęte w Kanadzie jako sposób na zapobieganie tej reakcji. Ustalenie bezpiecznej zawartości alkaliów w betonie, zależy od reaktywności kruszywa oraz właściwości mechanicznych betonu, warunków ekspozycji i użytkowania konstrukcji budowlanej.

<table>
<thead>
<tr>
<th>Wymagany poziom zapobiegania</th>
<th>Graniczna zawartość Na₂O₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/m³ betonu</td>
</tr>
<tr>
<td>łagodny</td>
<td>3,0</td>
</tr>
<tr>
<td>umiarkowany</td>
<td>2,4</td>
</tr>
<tr>
<td>mocny</td>
<td>1,8</td>
</tr>
<tr>
<td>wyjątkowy</td>
<td>1,8 + dodatki mineralne</td>
</tr>
</tbody>
</table>

Warunki szczególnego zapobiegania reakcji krzemionki z NaOH i KOH dotyczą średnio reaktywnego kruszywa (ekspansja bełcek betonowych jest większa niż 0,04%, ale mniejsza od 0,12%) w konstrukcjach narażonych na działanie czynników atmosferycznych, o okresie użytkowania większym od 75 lat (np. most lub tama).

Przy zastosowaniu reaktywnego kruszywa w takich konstrukcjach będzie wymagany „wyjątkowy” poziom zabezpieczenia. Zastosowanie średnio reaktywnego kruszywa w konstrukcjach narażonych na oddziaływanie czynników atmosferycznych z projektowanym czasem użytkowania 75 lat (np. nawierzchnia betonowa) wymaga umiarkowanego poziomu zabezpieczenia. W przypadku masywnych elementów konstrukcji wytworzonych z umiarkowanie reaktywnego kruszywa, użytkowanego w warunkach małej wilgotności (np. elementy wewnątrz budynków) wymagany jest „lagodny” poziom zapobiegania.
4.3. Zastosowanie dodatków mineralnych

Wyniki wielu badań i opracowań technicznych wykazały, że zastosowanie odpowiedniej ilości dodatku mineralnego w betonie zawierającym reaktywne kruszywo jest jedną z bardziej skutecznych metod zapobiegających szkodliwej ekspansji, spowodowanej reakcją alkaliów z krzemionką [21, 22]. Dodatki te obejmują: pucolany naturalne i sztuczne (np. popiół lotny, pył krzemionkowy, prażoną glinę lub łupek) oraz granulowany żużel wielkopiecowy. Zastosowanie pucolanu do eliminowania następujących reakcji alkaliów z krzemionką datazone jest od czasu odkrycia i opisania jej w pierwszej głównej publikacji Stantona [4]. Wymagana ilość dodatku mineralnego zmienia się w szerokim zakresie, zależnie między innymi od następujących czynników:
- właściwości dodatku mineralnego, zwłaszcza jego składu mineralnego i chemicznego (wymagane zastosowanie większej ilości dodatku zawierającego mniej krzemionki i więcej sodu, potasu oraz wapnia);
- reaktywności kruszywa (wymagana większa ilość dodatku mineralnego przy zastosowaniu kruszywa bardziej reaktywnego);
- zawartości alkaliów w betonie, pochodzących z cementu portlandzkiego i innych źródeł (wymagana ilość dodatków mineralnych zwiększa się z zawartością alkaliów rozpuszczalnych w wodzie);
- warunków ekspozycji betonu (wymagana większa zawartość dodatków mineralnych w betonie narażonym na migrację alkaliów ze źródeł zewnętrznych).

4.3.1. Wpływ dodatków mineralnych na ekspansję betonu

Wymagana ilość dodatków mineralnych ograniczających ekspansję betonu w następcu reakcji alkaliów z krzemionką zależy od ich składu chemicznego. Dodatki mineralne zawierające dużo reaktywnej krzemionki, takie jak pył krzemionkowy i metakaolin, zapobiegają ekspansji przy stosunkowo małej ich zawartości (od 10 do 15%). Natomiast dodatki mineralne z mniejszą zawartością krzemionki, a mianowicie popiół lotny klasy C i żużel, muszą być stosowane w większych ilościach (np. ≥ 40%). Dodatki mineralne (np. niektóre popioły klasy C) mogą wywołać efekt pessimum poprzez zwiększenie ekspansji (w porównaniu do betonu bez dodatku mineralnego), jeśli są stosowane w małych ilościach, ale zmniejszają ekspansję przy większym dodatku. Przedstawiona na rysunku 4.3 schematyczna zależność ekspansji betonu od zawartości różnych dodatków mineralnych pokazuje, że zwiększenie zawartości dodatków mineralnych powoduje zmniejszenie ekspansji do bezpiecznego poziomu, nie powodującego uszkodzeń betonu.
4. Metody zapobiegania reakcji alkaliów z krzemionką

Przedstawione na rysunku 4.4 dane doświadczalne dotyczące dwuletniej ekspansji beleczek z betonu [2], uzyskanego z cementu o dużej zawartości sodu i potasu oraz kruszywa krzemionkowego o dużej reaktywności, w funkcji zawartości dodatków mineralnych potwierdzają ten pogląd.

Powszechnie uważa się, że głównym mechanizmem zmniejszania ekspansji przez dodatki mineralne jest wiązanie sodu i potasu zawartych w roztworze w porach betonu i zmniejszenie ich zawartości, która może reagować z kruszywem. Jednakże sto-
sowanie dodatków mineralnych powoduje również zmniejszenie zawartości wapnia, które jest mniejsze w tych dodatkach oraz więze wodorotlenek wapnia w reakcji pucolanowej i zmienia strukturę porów, co prowadzi do zmniejszenia dyfuzji jonów i cząsteczek wody [22].

Wymagane zawartości dodatku mineralnego dla zapobiegania niszczącej ekspansji wywołanej reakcją alkaliów z krzemionką przedstawiono w tablicy 4.2. Zawartości dodatku mogą przekraczać te ilości w przypadkach zastosowania bardzo reaktywnego kruszywa, zwiększonej zawartości alkaliów w betonie – w tym pochodzących z kruszywa lub z otaczającego środowiska.

**Tablica 4.2. Wymagane zawartości różnych rodzajów dodatków mineralnych [21]**

<table>
<thead>
<tr>
<th>Rodzaj dodatku mineralnego</th>
<th>Zawartość [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popiół lotny o małej zawartości wapnia (&lt; 8% CaO)</td>
<td>od 20 do 30</td>
</tr>
<tr>
<td>Popiół lotny o średniej zawartości wapnia (8-20% CaO)</td>
<td>od 25 do 35</td>
</tr>
<tr>
<td>Popiół lotny o dużej zawartości wapnia (&gt; 20% CaO)</td>
<td>od 40 do 60</td>
</tr>
<tr>
<td>Pył krzemionkowy</td>
<td>od 8 do 15</td>
</tr>
<tr>
<td>Żużel wielkopiecowy</td>
<td>od 35 do 65</td>
</tr>
<tr>
<td>Matakaolin</td>
<td>od 10 do 20</td>
</tr>
</tbody>
</table>

Skuteczność popiołu lotnego w zapobieganiu reakcji alkaliów z krzemionką zmienia się znacznie w zależności od jego rodzaju. Popioły lotne klasy F z małą zawartością wapnia mają znacznie większy wpływ niż popioły lotne klasy C z dużą zawartością wapnia.

Zależność dwuletniej ekspansji betonu z cementu o dużej zawartości sodu i potasu oraz z reaktywnym kruszywem i 25% dodatkiem popiołu lotnego od zawartości wapnia w popiołach przedstawiono na rysunku 4.5. Większość popiołów zawierających mniej niż 20% CaO zapobiega ekspansji, jednak stopień ekspansji zwiększa się, gdy zawartość wapnia w popiele lotnym przekracza 20%. Wykazano także, że 25% dodatek popiołu lotnego o dużej zawartości alkaliów (≥ 5% Na₂O) nie wpływa korzystnie na ekspansję, niezależnie od zawartości wapnia.

Popioły lotne o dużej zawartości wapnia mogą obniżać ekspansję w przypadku większej ilości dodatku mineralnego, zwykle przekraczającego 40% masy spojwa (rys. 4.6).
4. Metody zapobiegania reakcji alkaliów z krzemionką

Rys. 4.5. Wpływ zawartości wapnia i alkaliów w popiołach lotnych na ekspansję belezek betonowych z wapieniem zsylikgowanym [22]

Rys. 4.6. Wpływ zawartości popiołu lotnego na ekspansję betonu [23]

Inną metodą zapobiegania reakcji alkaliów z krzemionką może być dodatek popiołu lotnego z pyłem krzemionkowym. Stwierdzono zmniejszenie ekspansji betonu w przypadku zastosowania trójskładnikowego spojwa składającego się z cemen
tu portlandzkiego z dwoma dodatkami mineralnymi. Ekspansję betonu zawierającego 5% pyłu krzemionkowego, w połączeniu z popiołem o różnej zawartości wapnia przedstawiono na rysunku 4.7 Dodatek 5% pyłu krzemionkowego równo
cześnie z 10% lub 15% popiołu lotnego o małej zawartości CaO, a także dodatek 20% lub 30% popiołu lotnego o dużej zawartości CaO obniżają ekspansję do bez
piecznego poziomu (≤ 0,040% po 2 latach) [24].
Rys. 4.7. Ekspansja betonu z dodatkiem 5% pylu krzemionkowego i różnych rodzajów popiołu lotnego [24]

Thomas i Shehata [25] w oparciu o wyniki badań określili empiryczne zależności ekspansji betonu po 2 latach od „wskaźnika chemicznego” wyliczonego ze składu spojwa. Najlepsze dopasowanie zależności ekspansji od składu chemicznego spojwa wykazał wskaźnik: \( \frac{[\text{Na}_2\text{O}_e]^{0.33} \cdot \text{CaO}}{\text{SiO}_2} \). Przedstawiona na rysunku 4.8 zależność określa jedynie tendencję wpływu składu spojwa na ekspansję spowodowaną reakcją alkaliów z krzemionką. Zależność ta może się zmieniać ze względu na reaktywność kruszywa i zastosowaną metodę badań, stąd nie może być stosowana jako metoda do przewidywania ekspansji w zależności od składu spojwa.

Rys. 4.8. Wpływ składu spojwa na ekspansję betonu z zyslikowanym wapieniem [25]
Decydujący wpływ na ekspansję ma stężenie sodu i potasu w roztworze w porach betonu, natomiast ich zawartości w spoście odgrywają mniej ważną rolę. Prawdopodobnie w warunkach badań laboratoryjnych ma na to wpływ ługowanie alkaliów z bełeczek betonowych, przez co zmniejsza się znaczenie początkowej zawartości alkaliów [26]. Trzeba także przypomnieć, że potas tworzący roztwór stały w belicie nie będzie miał w zasadzie wpływu na reakcję z krzemionką.

Innym dodatkiem mineralnym do cementu jest granulowany żużel wielkopiecowy, który zawiera zeszklone krzemiany i glinokrzemiany wapnia, i bardzo małą zawartość faz krystalicznych. Skuteczność zastosowania żużla wielkopiecowego w zmniejszeniu ekspansji wywołanej reakcją alkaliów z krzemionką wykazano po raz pierwszy w 1950 roku. Określono optymalny dodatek żużła wynoszący około 50-60% masowych w cementie. Dalsze badania wykazały lepsze właściwości cementu z żużłem wielkopiecowym w porównaniu z cementem portlandzkim, nawet przy całkowitej zawartości Na₂O większej w cemente z żużlem wielkopiecowym (w żużu wielkopiecowym jest od 0,2 do 0,3% Na₂O i od 0,2 do 1,5% K₂O) [27-29]. Wyniki badań cementów, zawierających od 23 do 65% żużła, obejmujące szeroki zakres zawartości tlenków sodu i potasu, wykazały, że ich udział w żużu nie wpływa w istotny sposób na ekspansję spowodowaną reakcją alkaliów z kruszywem.

**Rys. 4.9. Wpływ zawartości granulowanego żużła wielkopiecowego w cementie na ekspansję betonu [28]**

Ekspansja betonu zmniejsza się ze zwiększeniem zawartości granulowanego żużła wielkopiecowego w cementie oraz z jego rozdrobnieniem.
4.3.2. Wpływ dodatków mineralnych na skład roztworu w porach betonu

Główny mechanizm powodujący zmniejszenie ekspansji betonu w przypadku zastosowania dodatków mineralnych polega na obniżeniu stężenia wodorotlenków sodu i potasu, które występują w roztworze w porach betonu, pomimo że wszystkie dodatki mineralne zawierają pewną ilość tych składników, a niektóre z nich mogą nawet zawierać ich znacznie więcej niż cement portlandzki.

Alkalia związane w fazach spojów (cement portlandzki + dodatek mineralny) w betonie, w wyniku hydratacji mogą przechodzić do roztworu i wchodzić w skład wodnionego żelu krzemianu. W licznych pracach wykazano, że dodatek mineralny może mieć znaczny wpływ na stężenie NaOH i KOH w roztworze w porach betonu [22]. W badaniach wpływu popiołu lotnego i żużla na skład roztworu w zaczynie [30], a także pyłu krzemionkowego [31] wykazano, że większość dodatków mineralnych powoduje zmniejszenie stężenia wodorotlenków sodu i potasu w roztworze w porach zaczynu, a przede wszystkim betonu. Stopień zmniejszenia stężenia tych wodorotlenków w roztworze wzrasta wraz ze zwiększeniem dodatku mineralnego. Wpływ zawartości i rodzaju dodatku mineralnego na zmiany stężenia jonów hydroksylowych w roztworze w porach zaczynów o w/c = 0,50, po 2 latach ich dojrzewania omówiony w pracach Thomasa i innych [22, 25] oraz innych autorów [24, 27] przedstawiono na rysunku 4.10.

![Rys. 4.10. Skład roztworu w porach zaczynu z cementu z różnymi dodatkami mineralnymi [22]](image)

Najlepsze wyniki, przynajmniej w początkowym okresie dojrzewania zaczynu, daje pył krzemionkowy, a następnie kolejno metakaolin, popioł krzemionkowy i żużel. Popioły o dużej zawartości wapnia lub dużej zawartości sodu i potasu mają mniejszy wpływ, stąd muszą być stosowane w stosunkowo dużych ilościach, aby
powodować zmniejszenie stężenia sodu i potasu w roztworze w porach. W przypadku zaczynu z dodatkiem 10% pyłu krzemionkowego stężenie OH⁻ zmniejsza się w ciągu pierwszych 28 dni, zbliżając się do pH około 12,6, a następnie, z upływem czasu, zaczyna powoli wzrastać. Podobne wyniki uzyskano dla zaczynu zawierającego 5% pyłu krzemionkowego [24].

Te zmiany nie występują w przypadku zaczynów cementowych z innymi dodatkami mineralnymi. Jak pokazano na rysunku 4.10 w zaczynie zawierającym 5% pyłu krzemionkowego z dodatkiem żużla (25%) lub popiołu lotnego (15%) nie występuje po długim okresie wzrost stężenia jonów OH⁻. Przypuszcza się, że występowanie jonów glinu w dodatku mineralnym zapobiega prawdopodobnie uwalnianiu sodu i potasu do roztworu w porach. Hong i Glasser [32] wykazali, że wbudowanie jonów glinu do fazy C-S-H i jej przejściu w fazę C-A-S-H znacznie zwiększa zdolność do wiązania sodu i potasu i sugerują, że to tłumaczy korzystny wpływ dodatków zawierających glin w zmniejszaniu stężenia ich jonów w roztworze w porach i zapobiega reakcji alkaliów z krzemionką. Empiryczną zależność stężenia OH⁻ w roztworze w porach zaczynu z cementu z dodatkami mineralnymi, o w/c = 0,50, po 2 latach od składu chemicznego spojwa przedstawiono na rysunku 4.11 [25, 33]. Najlepsza korelacja stężenia OH⁻ występuje z wyliczonym współczynnikiem złożonym z iloczynu zawartości alkaliów i wapnia podzielonego przez kwadrat zawartości krzemionki w spojwie \((Na_2O_e \cdot CaO) / (SiO_2)^2\). Ujmuje ona oczekiwaną zależność alkaliczności roztworu w porach od zawartości alkaliów w spojwie oraz uwzględnia możliwość ich wiązania przez fazę C-S-H, wprowadzając w mianowniku udział krzemionki.

**Rys. 4.11.** Zależność stężeniem jonów hydroksylowych w roztworze w porach zaczynów o w/c = 0,5, po 2 latach w funkcji składu chemicznego spojwa [22]
Dodatek mineralny do cementu zmniejsza możliwość zachodzenia reakcji alkaliów z krzemionką przez zmniejszenie stężenia alkaliów w roztworze w betonie. Sód i potas są w betonie związane w fazie C-S-H oraz występują w roztworze w porach. Reaktywne składniki kruszywa mogą reagować tylko z wodorotlenkami sodu i potasu zawartymi w roztworze w porach betonu. Zdolność dodatków mineralnych do zmniejszenia zawartości tych wodorotlenków w roztworze jest związana z ich wpływem na udział i skład, a więc zdolność wiązania alkaliów przez fazę C-S-H. Bhatty i Greening [34] stwierdzili, że C-S-H o niskim stosunku Ca/Si wiąże więcej jonów sodu i potasu w porównaniu do tej fazy o większym stosunku Ca/Si. Dodatek popiołu lotnego zmniejsza stosunek Ca/Si, co jednocześnie zwiększa jej zdolność do absorpcji alkaliów. Także Rayment [35] obserwował znaczne różnice w składzie fazy C-S-H w zaczynach z cementu portlandzkiego i cementu portlandzkiego z dodatkiem popiołu lotnego już po 8 dniach dojrzewania zaczynu w temperaturze 20°C. Natomiast Uchikawa i współautorzy [36] nie stwierdzili różnic w składzie fazy C-S-H w zaczynach z cementu z popiołem lotnym po 91 dniach dojrzewania w temperaturze 20°C, ale znaczne zmiany zaobserwowali po 60 dniach w temperaturze 40°C, wskazując na wpływ reakcji pucolano wej na skład fazy C-S-H. Także Thomas i współautorzy [37] wykazali, że dodatek popiołu lotnego do betonu z kruszywem reaktywnym znacznie zwiększa zdolność do wiązania alkaliów przez fazę C-S-H. Glasser i Marr [38] wyjaśniają różnice w absorpcji alkaliów ładunkiem powierzchniowym fazy C-S-H, zależnym od stosunku C/S. Przy dużym stosunku, ładunek ten jest dodatni i faza C-S-H odrzuca kationy, natomiast zmniejszenie stosunku C/S powoduje, że ładunek powierzchniowy staje się ujemny [39]. Ujemnie ładunek fazy C-S-H ma zwiększoną zdolność do sorpcji kationów, w szczególności jonów sodu i potasu, z otaczającego roztworu. Również Hong i Glasser [32, 40] potwierdzili znaczenie stosunku C/S na kształtowanie zdolności wiązanego jonów sodu i potasu w uzyskanej syntetycznie fazi C-S-H, wykazali również, że może być ona znacznie zwiększona przez wprowadzenie w fazę C-A-S-H, w celu jej przekształcenia.

4.3.3. Wpływ naturalnej pucolany na reakcję alkaliów z krzemionką

Stosowane w technologii betonu dodatki mineralne, takie jak popioły lotne, źużle wielkopiecowe i pył krzemionkowy są produktami ubocznymi różnych przemysłów, w związku z tym ich jakość może być zmienna, a podaż ograniczona. Stąd zainteresowanie naturalnymi pucolanami mogącymi pełnić rolę dodatków mineralnych. Naturalne pucolany są między innymi skałami reprezentującymi etap pomagmowy. Klasycznym przykładem są tufy zwane we Włoszech pucolanami, a w Niemczech trasami, które zawierają duży udział fazy amorficznej. Zawierają
4. Metody zapobiegania reakcji alkaliów z krzemionką

sporo krzemionki, udział glinu może być większy od 20%, podczas gdy zawartość wapnia jest zazwyczaj mniejsza. Materiały te mają co najmniej jedną wspólną cechę, to jest zdolność do reakcji z wodorotlenkiem wapnia, która jest nazywana „reakcją pucolanową”. Naturalne materiały pucolanowe mogą zawierać znaczne ilości sodu i potasu, a norma ASTM C618-89 wyznacza graniczną zawartość alkaliów wynoszącą 1,5% Na₂Oₐ w naturalnej pucolanie. Ostatnie badania wykazały, że wiele pucolan naturalnych ma korzystny wpływ i ogranicza ekspansję następującą po reakcji alkaliów z kruszywem.

Występujące w przyrodzie minerały wykazują właściwości pucolanowe to zeolity, które są glinokrzemianami o charakterystycznej budowie. W strukturze zeolitów występują puste przestrzenie (kanały), pozwalające na absorpcję i wymianę jonów. Absorpcja jonów sodu i potasu z roztworu w porach matrycy cementowej jest drugim mechanizmem zapobiegającym reakcji alkaliów z krzemionką. W wielu pracach wykazano, że stosowanie naturalnego zeolitu zapobiega tej reakcji [41, 42,], przy czym jego dodatek powinien wynosić około 30% [43, 44]. Mechanizm przeciwdziałania reakcji alkaliów z krzemionką przez naturalny zeolit polega na zmniejszaniu stężenia jonów sodu i potasu w roztworze w porach, na skutek wymiany jonowej, absorpcji i reakcji pucolanowej. Współdziałanie tych mechanizmów może prowadzić do większego niż w przypadku innych pucolan (popiołu lotnego, żużla wielkopiecowego) zmniejszenia zawartości sodu i potasu w roztworze w porach [45, 46]. Naturalny zeolit zastosowany jako dodatek mineralny jest zwykle lepszym inhibitorem następstw reakcji alkaliów z krzemionką niż granulowany żużel wielkopiecowy, takim samym jak popiół lotny i nieco gorszym niż pył krzemionkowy [42].

4.4. Domieszki chemiczne zapobiegające ekspansi

W celu wyeliminowania szkodliwych dla betonu skutków reakcji alkaliów z krzemionką oprócz dodatków mineralnych są stosowane domieszki chemiczne. Zdolność litu do zmniejszania szkodliwej ekspansji będącej następstwem reakcji alkaliów z krzemionką w zaprawach i betonach została zaprezentowana po raz pierwszy przez McCoya i Caldwell [47]. Wykazali oni, że z ponad 100 badanych związków chemicznych, różne sole litu (np. LiCl, Li₂CO₃, LIF, Li₂SiO₃, LiNO₃ i Li₂SO₄) okazały się najbardziej skuteczne w eliminowaniu ekspansji zaprawy zawierającej szkło pyreksowe, o ile były stosowane w wystarczających ilościach. Przeprowadzono od tego czasu wiele badań potwierdzających te obserwacje [48]. Większość związków litu wykazuje korzystny wpływ, jednak azotan litu (LiNO₃) i węgian uważane są za najbardziej skuteczne w ograniczaniu następstw reakcji alkaliów z krzemionką [49, 50]. Mimo że lit jest metalem alkalicznym, takim jak
sód i potas, to związki litu są domieszką zmniejszającą następstwa reakcji alkaliów z krzemionką. Mechanizm wpływu jonów litu na reakcję alkaliów z krzemionką nie jest znany, natomiast zaproponowano wiele hipotez [48]. Najprostszym po-wszechie stosowanym wyjaśnieniem jest założenie, że sole litu mogą reagować z reaktywną krzemionką w podobny sposób jak sole sodu i potasu, a produkt reakcji jest nierozpuszczalnym w wodzie krzemianem litu z niewielką zdolnością do wchłaniania wody i pęcznienia. Uwodniony krzemian litu tworzący warstwę wokół reaktywnego ziarna kruszywa krzemionkowego, utrudniają dyfuzję jonów sodu i potasu, zapobiegając reakcji z wodorotlenkami sodu i potasu.

Początkowe prace McCoya i Caldwella [47] wykazały, że dodatek litu zapobiegający ekspansji jest funkcją stężenia jonów sodu i potasu w roztworze. Ustali-ili oni, że ekspansję bełeczek zaprawy zawierającej szkło pyreksowe można znacznie zmniejszyć jeżeli stosunek molowy litu do sodu i potasu jest większy niż 0,74, tj. \[\frac{[\text{Li}]}{[\text{Na} + \text{K}]} > 0.74\]. W późniejszych pracach wykazano podobny związek między wymaganą ilością litu i zawartością alkaliów a minimalną wartością \[\frac{[\text{Li}]}{[\text{Na} + \text{K}]}\]. Utrzymanie założonego stężenia litu w roztworze w porach jest dosyć trudne, gdyż znaczna jego ilość może być wbudowana w produkty hydratacji cementu, a przez to nie wpływa na przebieg reakcji alkaliów z krzemionką [50]. Wykazano także zależność wymaganego stężenia litu od wielu czynników, takich jak rodzaj związków litu oraz reaktywnego kruszywa, a być może zastosowanej metody badań [52]. W naj-nowszych badaniach wykazano wpływ rodzaju kruszywa na ilość litu potrzebną do zapobiegania ekspansji spowodowanej reakcją alkaliów z krzemionką [53].

![Rys. 4.12. Wpływ dodatku litu na ekspansje betonu z kruszywem o różnej reaktywności [53]](image-url)
Rysunek 4.12 pokazuje ekspansję bełeczek betonowych z dwunastu różnych kruszyw reaktywnych i jednego niereaktywnego (NF) w funkcji różnych zawartości litu (średni stosunek wynosił \(\frac{[Li]}{[Na + K]} = 0,74\)) po dwóch latach. Dla sześću z dwunastu kruszyw 75-100% standardowego dodatku litu było wystarczające dla ograniczenia ekspansji (≤ 0,040% po 2 latach). W przypadku trzech kruszyw konieczne było wprowadzenie od 125% do 150% tej ilości; jednakże dla pozostałych trzech kruszyw ekspansja nie uległa zmniejszeniu nawet przy zastosowaniu 150% dodatku normowego [53].

Wpływ litu prawdopodobnie zależy w dużym stopniu od rodzaju kruszywa, stąd jest możliwe zastosowanie tego samego dodatku dla ograniczenia ekspansji związanej z reakcją alkaliów z krzemionką, a minimalna dawka może być określona tylko doświadczalnie. W celu znalezienia potrzebnego dodatku litu proponuje się prowadzenie badań na bełeczkach betonu, natomiast nie zaleca się stosowania metod przyspieszonych.

4.5. Zapobieganie ekspansji spowodowanej reakcją alkaliów z węglanami

Bardzo trudno jest wpłynąć na ekspansję spowodowaną reakcją alkaliów z kruszywami węglanowymi, których charakterystykę podano w punkcie 3.2. W związku z tym zaleca się nie stosowanie takich kruszyw do produkcji betonu. Materiał reaktywnego można uniknąć przez selektywne pozyskiwanie skał w kopalniach. Można także zmniejszyć zawartość reaktywnego kruszywa w stosie okruchowym, stosując mniej niż 20% gruboziarnistego kruszywa reaktywnego lub 15% całkowitej masy kruszywa, gdy zarówno kruszywo drobne, jak i grube zawierają składniki reaktywne. Inna metoda polega na rozdrabnianiu kruszywa do uziarnienia, przy którym szkodliwa ekspansja nie występuje. W opinii wielu autorów jednak unikanie materiału reaktywnego wydaje się być najbardziej rozsądnym rozwiązaniem.

Ekspansję można także zmniejszyć do dopuszczalnego poziomu przez zastosowanie cementu o bardzo małej zawartości sodu i potasu, np. nie większej niż 0,40% Na₂O [54]. Stwierdzono jednak ekspansję betonu z cementu o zawartości alkaliów nieznacznie większej od tego poziomu, a mianowicie 0,43% Na₂Oe [55]. Williams i Rogers [56] stwierdzili pękanie płyt chodnikowych po 24 miesiącach eksploatacji, pomimo że zawartość alkaliów w betonie wynosiła zaledwie 1,74 kg Na₂Oe/m³. Również w tej samej okolicy wystąpiło pękanie krawężników, w których cement zawierał tylko 0,31% Na₂Oe [56]. Wpływ zawartości alkaliów w cementie na ekspansję bełeczek betonowych produkowanych z wapienia zdolomityzowanego, zawierającego minerały ilaste (Pittsburg) w porównaniu z wapieniem sylikifikowanym (Spratt) pokazano na rysunku 4.13 [57]. Wyniki te stanowią dobrą
ilustrację różnego zachowania się kruszywa w reakcji alkaliów z węglanami w równaniu z reakcją alkaliów z krzemionką, w wapieniach reaktywnych.

*Rys. 4.13. Wpływ zawartości alkaliów w cemencie na ekspansję beleczek betonowych z wapieniem zdolomityzowanym w porównaniu z wapieniem zysylifikowanym [57]*

Swenson i Gillott [58] stwierdzili, że pucołany zastępując 25% masy cementu skutecznie ograniczające ekspansję spowodowaną reakcją alkaliów z krzemionką, nie miał podobnego wpływu w przypadku reakcji alkaliów z węglanami. Kolejne badania również potwierdziły te obserwacje. Mielony granulowany żużel wielkopiecowy dodawany w ilości 25 i 50% do cementu o dużej zawartości alkaliów (1,04% Na₂Oₑ) nie spowodował zmniejszenia ekspansji badanych w laboratorium beleczek betonowych i płytabetonowych w eksploatowanej konstrukcji, z wapieniem dolomitycznym (Pittsburg) [59]. Thomas i Innis [28], badając to samo kruszywo w beleczkach betonowych zawierających dodatek żużła, stwierdzili, że ani 65% żużła w połączeniu z cementem zawierającym 1,25% Na₂Oₑ, ani 50% żużła dodanego do cementu zawierającego 0,50% Na₂Oₑ nie ograniczyło ekspansji. Także Perry i Gillott [60] wykazali, że 20% pyłu krzemionkowego nie zahamowało rozszerzalności występującej w następstwie reakcji alkaliów z węglanami. Badania wykazały ponadto, że również dodaniewiązków litu (np. LiCl, LiOH i Li₂CO₃) do betonu nie zmniejszyło ekspansji spowodowanej reakcją alkaliów z węglanami [58, 61], natomiast domieszki te zmniejszają ekspansję spowodowaną reakcją alkaliów z krzemionką, w przypadku wielu rodzajów kruszyw [62].
4. Metody zapobiegania reakcji alkaliów z krzemionką

Litra tura


4. Metody zapobiegania reakcji alkaliów z krzemionką

Durability of concrete and cement composites, ed. by Page C.L., Page M.M., Wood-
[34] Bhatty M.S.Y., Greening N.R., Interaction of alkalis with hydrating and hydrated
calcium silicates, Proc. 4th Intern. Conf. Effects of Alkalis in Cem. and Conc., Purdue
1978, pp. 87-112.
[35] Rayment P.L., The effect of pulverized-fuel ash on the C/S molar ratio and alkali con-
[36] Uchikawa H., Uchida S., Hanehara S., Relationship between structure and penetrabil-
ity of Na ion in hardened blended cement paste mortar and concrete, Proc. 8th
ICAAR, Kyoto 1989, pp. 121-128.
total alkali content on alkali silica reaction in concrete containing natural U.K. ag-
gregate, Proc. 2nd CANMET/ACI International Conference on Durability of Con-
[38] Glasser F.P., Marr J., The alkali binding potential of OPC and blended cements,
Il Cemento, 82, 1985, pp. 85-94.
[39] Glasser F.P., Chemistry of the alkali-aggregate reaction. The Alkali-Silica Reaction in
Concrete, ed. by Swamy R.N., Blackie, London 1992, pp. 96-121
[40] Hong S.Y. Glasser F.P., Alkali binding in cement pastes, Part 1, The C-S-H phase,
[41] Ahmadi B., Shekarchi M., Use of natural zeolite as a supplementary cementitious
[42] Feng N., Niu Q., Study on suppression effect of natural zeolite on expansion of con-
[43] Owsiak Z., Czapik P., Zbadanie wpływu dodatku clinopytolitu na zmniejszenie eks-
[44] Owsiak Z., Czapik P., Ograniczenie efektów reakcji alkalia-kruszywo żwirowe w beto-
[45] Pei-wei G. et al., Influence of composite mineral admixtures on expansion and crack
due to AAR, 12th ICAAR, Pekin 2004.
[46] Siemaszko-Lotkowska D., Gajewski R., Właściwości zeolitu w aspekcie zastosowania
w betonie „Ceramika”, 103, 2008, s. 1101-1108.
[47] McCoy W.J., Caldwell A.G., New approach to inhibiting alkali-aggregate expansion,
“Journal of the American Concrete Institute”, 22(9), 1951, pp. 693-706.
[48] Feng X., Thomas M.D.A., Brenner T.W., Balcom B.J., Folliard K.J., Studies on lith-
ium salts to mitigate ASR-induced expansion in new concrete: a critical review, Cem.


Rozdział 5

Metody badań reaktywności kruszyw

W rozdziale tym opisano stosowane obecnie metody badań do oceny reaktywności kruszyw (w odniesieniu do reakcji alkaliów z krzemionką i reakcji alkaliów z węglanami). Opisano również metody badawcze dodatków mineralnych i domieszek chemicznych (azotan litu) pozwalające na ocenę ich potencjalnej możliwości zapobiegania reakcji alkaliów z krzemionką. Ponieważ brak jest metod zapobiegających reakcji alkaliów z węglanami z tego względu opisano tylko metody oceny reaktywności tych kruszyw.

5.1. Metody badań reaktywności kruszyw krzemionkowych z wodorotlenkami sodu i potasu

Od czasu odkrycia reakcji alkaliów z krzemionką przez Stantona [1], opracowano wiele różnych metod pozwalających na rozróżnienie kruszyw reaktywnych. W tej sytuacji przedstawiono wady i zalety obecnie stosowanych metod badań oraz ocenę, które z nich są najbardziej odpowiednie do badania reaktywności kruszywa i oceny stosowanych dodatków mineralnych oraz domieszek, zapobiegających skutkom reakcji alkaliów z krzemionką.

Wśród najbardziej popularnych metod oceny reaktywności kruszyw, zarówno podanych w normach amerykańskich ASTM, europejskich RILEM, jak i polskich, wyróżnia się metody petrograficzne, chemiczne oraz metody badania ekspansji bełceczek z zapraw lub betonów (szybkie oraz wymagające długiego czasu) [2].

W metodach badania reaktywności kruszyw krzemionkowych, oprócz analizy petrograficznej, kluczową rolę odgrywają czynniki warunkujące reakcję alkaliów z krzemionką. Reakcja ta może wystąpić po dłuższym czasie, stąd w wielu normowych metodach badań zastosowanie podwyższonej temperatury, ciśnienia, stężenia alkaliów oraz wilgotności pozwala na wnioskowanie, w krótszym czasie, o zachowaniu kruszywa w rzeczywistych warunkach eksploatacyjnych.
Amerykańskie Stowarzyszenie Badań Materialów (ASTM) wprowadza pięć metod badania potencjalnej reaktywności kruszyw krzemionkowych z NaOH i KOH, zawartych w normach:
- ASTM C295: Badania petrograficzne kruszyw do betonu [3],
- ASTM C289: Ocena potencjalnej reaktywności alkalicznej kruszyw (metoda chemiczna) [4],
- ASTM C1260: Badanie potencjalnej reaktywności kruszyw (metoda przyspieszona) [5],
- ASTM C227: Badanie potencjalnej reaktywności mieszank cementu i kruszywa (metoda trwająca długo) [6],
- ASTM C1293: Badanie wydłużenia belek betonowych na skutek reakcji alkaliów z krzemionką [7].

Wprawdzie brak powszechnie akceptacji metod pozwalających na jednoznaczną ocenę reaktywności kruszyw, jednak ujęcie ich w normach, szczególnie amerykańskich, i zebranie obszernego materiału doświadczalnego pozwoliło na wybór szczególnie przydatnych, a co najważniejsze dających stosunkowo szybko wyniki.

Podobnie RILEM zaleca pięć różnych metod badania reaktywności kruszyw z wodorotlenkami sodu i potasu. Są to następujące dokumenty:
- AAR-0: Ogólne zasady stosowania metod RILEM w ocenie potencjalnej reaktywności kruszyw oraz aneks A-9 do AAR-0: Ocena potencjalnej reaktywności kruszyw węglanowych [8],
- AAR-1: Badania petrograficzne [9],
- AAR-2: Ocena potencjalnej reaktywności kruszyw – przyspieszona metoda badania beleczek z zaprawy [10],
- AAR-3: Ocena potencjalnej reaktywności kruszyw – metoda badania za pomocą beleczek betonowych z analizowanego kruszywa w temperaturze 38°C [11],
- AAR-4: Ocena potencjalnej reaktywności kruszyw – przyspieszona metoda badania beleczek betonowych [12],
- AAR-4.1: Ocena potencjalnej reaktywności kruszyw – przyspieszona metoda badania za pomocą beleczek betonowych z analizowanego kruszywa w temperaturze 60°C [13].

W Polsce, w związku z brakiem metod badania reaktywności kruszyw (brak uzupełnienia krajowego do normy PN-EN 12620 [14]), stosowane są trzy metody badawcze zawarte w polskich normach:
5. Metody badań reaktywności kruszyw


5.1.1. Metody ASTM

Zestawienie metod badań normowych stosowanych do oceny reaktywności kruszywa krzemionkowego oraz uwagi dotyczące zalet i wad każdej z metod przedstawiono w tablicy 5.1. Przyspieszone metody badań beleczek z zapraw i betonu, jako dwie najczęściej stosowane metody badania reakcji alkaliów z krzemionką, omówiono szczegółowo.

<table>
<thead>
<tr>
<th>Metoda badań</th>
<th>Charakterystyka</th>
</tr>
</thead>
</table>
| ASTM C295 – normowa metoda badań petrograficznych kruszywa do betonu | • pozwala na wykrycie wielu (ale nie wszystkich) potencjalnie reaktywnych składników kruszywa  
• wiarygodność badania zależy od doświadczenia i umiejętności indywidualnych petrogra 
• wyniki nie powinny być wykorzystywane wyłącznie do przyjęcia lub odrzucenia kruszywa – najlepiej stosować w połączeniu z innymi metodami badań laboratoryjnych (np. ASTM C1260 i/lub ASTM C1293) |
| ASTM C289 – metoda badań dla określenia potencjalnej reaktywności kruszyw krzemionkowych z alkaliami (metoda chemiczna) | • kruszywo jest zanurzone w 1M roztworze NaOH przez 24 godziny  
• w roztworze oznacza się zawartość krzemionki i sodu  
• wysuwa się następujące zastrzeżenia:  
  - minerały występujące w kruszywie mogą wpływać na rozpuszczalność krzemionki [18],  
  - badanie wykazuje reaktywność kruszyw o dobrych właściwościach,  
  - niektóre reaktywne fazy mogą zostać odrzucone w trakcie podziału na frakcje w celu otrzymania kruszywa o założonym uzgarnieniu |
| ASTM C227 – metoda badań potencjalnej reaktywności za pomocą beleczek z zaprawy z ocenianym kruszywem | • metoda badania beleczek z zaprawy (kruszyw/cement = 2,25)  
• próbkę przechowywane w pojemnikach o dużej wilgotności, w temperaturze 38°C  
• nadmierne wypłukiwanie sodu i potasu z próbek podczas badania |
Pierwszą z metod oceny reaktywności kruszywa jest analiza petrograficzna (ASTM C295) [3]. Badania przeprowadza się na próbkę wyciętej z rdzenia lub kawałka kruszywa. Obserwacje pod mikroskopem optycznym zgodnie z rycinami i cienkimi płytkami kruszywa pozwala przede wszystkim na ilościowe oznaczenie reaktywnych minerałów. Metoda ta pozwala na szybką ocenę składników reaktywnych w kruszywie, jednak jej dokładność i wiarygodność uzależniona jest od umiejętności i doświadczenia mineraloga. Zaleca się łączenie metod petrograficznych z innymi metodami oceny reaktywności kruszywa, na przykład badaniem zaprawy [5] i betonu [7].

5. Metody badań reaktywności kruszyw

Stąd podobnie jak w przypadku metod petrograficznych zalecane jest wykonanie dodatkowych analiz pozwalających na potwierdzenie wyników uzyskanych metodą podaną w ASTM C289.

Następną metodą badania reaktywności kruszyw jest pomiar zmian wymiarów liniowych beleczek z zapraw według ASTM C227 [6]. W metodzie tej stosuje się cement portlandzki o zawartości alkaliów większej niż 0,60% Na₂O, a beleczki zapraw przechowuje się w temperaturze 38±2°C, nad lustrem wody. Zgodnie z wytycznymi normy wartość ekspansji przekraczająca 0,10% w okresie 6 miesięcy daje podstawę do zaliczenia kruszywa do grupy reaktywnych. Jednakże uzupełniający tę normę załącznik (C33) [6] podaje zakres wydłużenia beleczek pozwalający na zaliczenie kruszywa do grupy reaktywnych wykazując, iż zmiany wymiarów przekraczające 0,05% w okresie 3 miesięcy dowodzą potencjalnej reaktywności kruszywa. Jeżeli jednak w przeciągu 6 miesięcy zmiana wymiarów liniowych próbek będzie mniejsza od 0,10%, mimo że po trzech miesiącach przekroczy 0,05%, kruszywo zalicza się do niereaktywnych. Po wielu latach badań reaktywności kruszywa tą metodą [6] stwierdzono, że kryteria poziomów ekspansji powinny być zależne od składu mineralnego kruszywa, co wpływa na okres wystąpienia reakcji, a więc jest inne dla kruszyw szybko reagujących, zawierających opal, ryo- lit, andezit lub szkło. Dodatkowo metoda ta nie pozwala na przewidywanie reaktywności w przypadku wielu późno reagujących kruszyw (szarogłąz, gnejs), nawet w przypadku zwiększenia zawartości sodu i potasu w cemencie i zwiększenia czasu próbki do okresu większego od 12 miesięcy [20]. Dodatkowym ograniczeniem metody jest ryzyko wymywania alkaliów z zapraw, co może również wpływać na nieprawidłową ocenę reaktywności kruszywa (zaliczenie kruszywa, pomimo jego reaktywności, do niereaktywnych) [21]. Uważa się, że należy zwiększyć zawartość alkaliów do 1,25%, a stosunek w/c nie powinien przekroczyć 0,50.

przyjmowane w poszczególnych krajach różnią się. Na przykład graniczne wartości zgodnie z ASTM i CSA są następujące:

- **kryterium zmiany długości w ASTM C1260:**
  - wydłużenie < 0,10% – określa kruszywo niereaktywne;
  - od 0,10 do 0,20% – określa kruszywo jako potencjalnie reaktywne;
  - > 0,20% – uważane jest za reaktywne.

- **kryterium zmiany długości w CSA A23.2-25A:**
  - wydłużenie > 0,15% (0,10% w przypadku wapieni) – określa kruszywo jako reaktywne,
  - wydłużenie < 0,15% (0,10% w przypadku wapieni) – określa kruszywo jako niereaktywne.

Metoda ASTM C1293 [7], polegająca na badaniu beleczek betonowych jest powszechnie uważana za najlepszą i najbardziej dokładną metodę do prognozowania zachowania się kruszywa w warunkach eksploatacyjnych. Zaletą tej metody jest możliwość jej zastosowania do betonu bez rozdrabniania kruszywa grubego; kruszywo drobne nie wymaga przesiewania. Jest to jedyna metoda badania reaktywności kruszywa grubego i drobnego równocześnie. Dodatkowo pozwala na ocenę reaktywności kruszywa wolno i szybko reagujących. W stosowanym cemen- cie równoważnik sodowy powinien wynosić od 0,8% do 1,0% Na₂Oₑ, a stężenie NaOH w wodzie zarobowej powinno zapewnić osiągnięcie całkowitej zawartość równoważnika wynoszącego 1,25% (w stosunku do masy cementu), co równa się całkowitej zawartości alkaliów w mieszance betonowej wynoszącej 5,25 kg/m³. Natomiast stosunek w/c w mieszance betonowej powinien zawierać się w przedzia- le od 0,42 do 0,45. Próbki betonów powinny dojrzeć w temperaturze 38±2°C przez okres 12 miesięcy. Ekspansja wynosząca 0,04% lub więcej pozwala na stwierdzenie wystąpienia szkodliwej reakcji sodu z krzemionką. Aczkołwiek metoda zalecana przez ASTM C1293 [7] jest powszechnie oceniana za najlepszą do oceny reaktywności kruszywa, nie jest ona jednak pozbawiona wad. Jedną z nich jest wymaganie dotyczące dużej zawartości równoważnika sodowego w stosowa- nym cencemicy. Większość produkowanych cementów nie zawiera tak dużego Na₂Oₑ. Dodatkowo wadą metody jest długi okres badań. Skrócenie czasu badań uzyskano, przez zastosowanie metody przyspieszonej, w której próbki betonu przechowywane są w temperaturze 60°C przez okres trzech miesięcy. Niektórzy autorzy mówią o wypłukiwaniu wodorotlenków sodu i potasu z betonu [26, 27], a na dowód przytaczają mniejszą ekspansję niż próbek dojrzewających w warunkach naturalnych, tak jak to pokazano w tablicy 5.2.

<table>
<thead>
<tr>
<th>Zawartość alkaliów w betonie [% Na₂Oₑ]</th>
<th>ASTM C1293 – ekspansja po jednym roku [%]</th>
<th>Dojrzewanie bloczków betonowych w środowisku naturalnym, ekspansja po 3,5 roku [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,52</td>
<td>0,01</td>
<td>0,88</td>
</tr>
<tr>
<td>0,95</td>
<td>0,33</td>
<td>1,10</td>
</tr>
<tr>
<td>1,25</td>
<td>0,59</td>
<td>1,07</td>
</tr>
</tbody>
</table>

Ekspansja beleczek betonu z najmniejszą zawartością alkaliów nie przekroczyła ekspansji 0,04%, co stanowi granicę w metodzie ASTM C1293 [7] po jednym roku, a bloczki betonowe po tym okresie ekspozycji ulegały spękaniu. Przyczyną tej
różnice jest wymywanie alkaliów z betonu, których zawartość w ten sposób zmniejszyła się poniżej zawartości progowej, nie wywołując tym samym ekspansji. Większe kostki podczas ekspozycji były mniej podatne na ługowanie, a tym samym wykazywały znaczną ekspansję i pękanie. Stąd nie jest zalecane zastosowanie jednej metody badań [7] do określania granicznej zawartości alkaliów w przypadku stosowanego uziarnienia kruszywa lub kombinacji kruszywa i spoiwa. Inną wadą metody ASTM C1293 jest zbyt długi czas trwania badania: rok dla kruszyw, dwa lata dla dodatków i domieszek zapobiegających ekspansji. Z tego względu bardzo niewiele instytucji i praktyków stosuje tę metodę. Nadmiernie długie trwanie testu jest spowodowane warunkami badań (przechowywanie beleczek betonu nad wodą w temperaturze 38°C). Próbowano skrócić okres badań przez zwiększenie temperatury przechowywania do 60°C, licząc na uzyskanie odpowiednich informacji w ciągu kilku miesięcy, a nie od 1 do 2 lat. Ideker i inni [28] wykapowali, że przyspieszona wersja metody dała znacznie mniejszą ekspansję niż metoda normowa [7], gdyż występowało większe wymywania alkaliów w temperaturze 60°C, w porównaniu z 38°C.

Analiza badań zaproponowanych w ASTM pozwala stwierdzić, że każda z proponowanych metod posiada pewne wady. W jednych metodach warunki badań są nazbyt łagodne, a w innych zbyt restrykcyjne, niektóre metody są natomiast nadmiernie czasochłonne.

5.1.2. Metody RILEM

W Europie reaktywność kruszyw z wodorotlenkami sodu i potasu podlega ocenie według zasad, zawartych głównie w normach krajowych. Według Góralczyka [29] brak unifikacji wynika ze złożoności procesów korozjnych, zmienności czynników atmosferycznych w tej strefie klimatycznej, a przez to dużej trudności w opracowaniu jednolitych metod oceny reaktywności kruszyw dla wszystkich krajów. W pracach prowadzonych przez członków Międzynarodowego Komitetu RILEM TC191 (w późniejszych strukturach RILEM TC219) znaleźć można dokumenty dotyczące metod badań, kryteriów oceny, jak również metod zapobiegania reakcji alkaliów z krzemionką. Ogólny schemat oceny reaktywności kruszyw przedstawiono na rysunku 5.1 i w tablicy 5.3.

Wyjątkową metodą oceny reaktywności kruszyw jest badanie petrograficzne według AAR-1 [9]. Ze względu na rodaj i zawartość składników potencjalnie reaktywnych kruszywo zalicza się do jednej z trzech klas:
- klasa I: kruszywo niereaktywne,
- klasa II: kruszywo potencjalnie reaktywne,
- klasa III: kruszywo bardzo reaktywne [30].
5. Metody badań reaktywności kruszyw

Rys. 5.1. Schemat oceny reaktywności kruszyw według RILEM [8]

Tablica 5.3. Metody badań reaktywności kruszyw według RILEM

<table>
<thead>
<tr>
<th>Metoda badań</th>
<th>Komentarz</th>
</tr>
</thead>
</table>
| AAR-1 – metoda badań petrograficznych kruszywa do betonu | • ze względu na rodzaj i zawartość składników potencjalnie reaktywnych kruszywo zalicza do jednej z trzech klas:  
  - klasa I kruszywo nireaktywne  
  - klasa II kruszywo potencjalnie reaktywne  
  - klasa III kruszywo bardzo reaktywne  
  • wiarygodność badania zależy od doświadczenia i umiejętności indywidualnych petrografa  
  • dalszy etap badań i wybór metody zależy ścisłe od oznaczonego uprzednio stopnia reaktywności kruszywa |
Dalszy etap badań i wybór metody zależny ściśle od wykazanego uprzednio stopni reaktywności kruszywa. W metodzie AAR-2 o potencjalnej reaktywności kruszywa, obserwuje się zmiany długości próbek zapraw przechowywanych przez okres 14 dni w roztworze 1 M NaOH, w temperaturze 80±2°C [10]. Ekspansja przekraczająca 0,10% w przypadku próbek o wymiarach 285x25x25 mm oraz 0,08% dla beleczek 160x40x40 mm świadczy o potencjalnej reaktywności badanego kruszywa. Zaleca się stosowanie metody AAR-2 do analizy kruszyw powoli ulegających ekspansji, takich jak granity, gnejsy, melafiry, kwarcyty oraz kruszywa dolomitowe [31].

Badanie beleczek betonowych w temperaturze 38°C i wilgotności względnej 90%, zgodnie z AAR-3, jest metodą podstawową oceny reaktywności kruszywa grubego i drobnego, przy zawartości alkaliów w cemencie przekraczającej 1,25% Na₂O₂ lub wynoszącej mniej niż 5 kg/m³. Wyniki rocznej analizy wydłużenia próbek, mieszczące się w przedziale 0,05-0,10% świadczą o potencjalnej reaktywności, natomiast ekspansja większa lub mniejsza od tego zakresu wskazuje odpowiednio na kruszywo reaktywne i nieraktywne [11].

Metoda AAR-4.1 opiera się na toku postępowania zawartego w AAR-3, przy czym próbki betonowe przechowywane są w wodzie w temperaturze 60°C, przez okres 15 tygodni. Z przygotowanej mieszanki kruszywa drobnego i grubego, zarówno reaktywnego, jak i nieraktywnego oraz cementu o zawartości Na₂O₂ 1,15%...
formowane są belezki betonowe. Dotychczas nie ustalono zasad oceny reaktywności jednakże zaproponowano, aby ekspansja próbek betonowych przekraczająca 0,03% po okresie 15 tygodni świadczyła o reaktywności kruszywa [13].

5.1.3. Metody zawarte w polskich normach


 Wyniki tych badań poparte są najczęściej dodatkową oceną potwierdzającą stopień zagrożenia reakcją alkaliów z krzemionką oraz niszczącą ekspansją w świetle oznaczonej zawartości reaktywnych składników w kruszywie. Należy podkreślić, że nawet kruszywa reaktywne nie zawsze powodują szkodliwą ekspansję, natomiast ekspansja nie występuje bez reakcji wywołanej przez wodorotlenki sodu i potasu. Metody petrograficzne mogą dostarczać cennych informacji o składnikach mineralnych i ich udziale w kruszywie, ale należy zwrócić uwagę, że żadna metoda badań składu mineralnego nie może dawać pewnej informacji o zagrożeniu wystąpieniem reakcji alkaliów z krzemionką. Interpretacja wyników badań petrograficznych i prowadzonych analiz, a także inne właściwości kruszyw przede wszystkim zawartość reaktywnych ziaren, wielkość, porowatość oraz gęstość są pomocne w ocenie przewidywanej ekspansji.

W literaturze można znaleźć rodzaje kruszyw reagujących z wodorotlenkami sodu i potasu oraz powodujące ekspansję, rodzaje reaktywnych składników kruszyw oraz opis trudności z ich identyfikacją petrograficzną. Należy podkreślić, że badania petrograficzne stanowią pierwszy etap oszacowania właściwości kruszyw i ich wpływu na trwałość betonu. Bardzo cenne są także informacje o zachowaniu się kruszywa w warunkach eksploatacji betonu, o ile takie dane są dostępne.

Potencjalną reaktywność kruszyw można oznaczyć szybkimi metodami chemicznymi. Metoda podana w PN-92/B-06714/46 [16] polega na określeniu reaktywności z sodem i potasem badanej próbki kruszywa na podstawie ubytku masy kruszywa drobnego lub grubego poddanego działaniu wodorotlenku sodowego oraz oznacza- niu zawartości reaktywnych ziaren krzemionki o powierzchni rozmiękczonjej pod wpływem wodorotlenku sodu. Wyniki przeprowadzonych badań porównuje się
z wymaganiami zawartymi w normie dzielącej kruszywo na trzy stopnie reaktywności. W przypadku stwierdzenia, że badane kruszywo odpowiada pierwszemu lub drugiemu stopniowi potencjalnej reaktywności dla potwierdzenia ostatecznej oceny należy wykonać dodatkowe badania kruszyw, sporządzając beleczki z zaprawy według PN-91/B-06714/34 [17]. Kruszywo odpowiadające pierwszemu stopniowi reaktywności należy do kruszyw potencjalnie reaktywnych i może być stosowane do produkcji elementów betonowych nie narażonych na stałe bądź krótkotrwałe działanie wilgoci. Kruszywo zaliczane do drugiego stopnia reaktywności może być stosowane w betonie z cementów o małej zawartości Na₂Oₑ < 0,6%, przy czym ilość cementu w betonie < 500 kg/m³, lub z cementów zawierających dodatki pucolanowe.

Druga metoda badania według PN-88/B-06714/47 [15] polega na określeniu masowej zawartości krzemionki rozpuszczalnej w kruszywie poddanym działaniu roztworu 1 N NaOH, w temperaturze 80°C, w ciągu 24 godzin. Norma nie określa granicznej zawartości krzemionki rozpuszczalnej a tylko podaje, że uzyskany wynik stanowi wstępną ocenę reaktywności badanego kruszywa. Ostateczną ocenę reaktywności kruszywa należy potwierdzić metodą podaną w PN-91/B-06714/34.

Ocena reaktywności kruszyw w przypadku równoczesnego wyboru cementu jest zawarta w normie PN-91/B-06714/34 [17] i obejmuje badania ekspansji beleczek z zaprawy z cementem o dużej zawartości Na₂Oₑ i kruszywem przypuszczalnie reaktywnym. Metoda badań podana w PN-91/B-06714/34 polega na pomiarze zmian liniowych oraz zniszczenia beleczek z zaprawy (zmiany makroskopowe na powierzchni beleczek w postaci pęknięć i rys, zmiany barwy, wykwity, wycieki, odpryski itp.) wywołanych reakcją kruszywa z wodorotlenkami sodu i potasu. Zawartość alkaliów w zastosowanym do badań cementie powinna wynosić 1,2 ±0,1% w przeliczeniu na Na₂Oₑ. Kruszywo uznaje się za reaktywne z wodorotlenkami sodu i potasu, jeżeli po którejkolwiek serii pomiarów wykonanych w okresie nie przekraczającym 180 dni, średnie wydłużenie beleczek przekracza 0,1%.

**Rys. 5.2. Schemat oceny reaktywności kruszyw według polskich norm [34]**
Tablica 5.4. Metody oceny reaktywności kruszyw z wodorotlenkami soda i potasu, zawarte w polskich normach [33]

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Nazwa metody</th>
<th>Cel badań</th>
<th>Rodzaj badań</th>
<th>Czas trwania badań</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PN-86/B-06714/34: Kruszywa mineralne. Badania. Oznaczenie reaktywności [17]</td>
<td>metoda określająca podatność bełeczek z badanego kruszywa i specjalnie dobranego cementu na wystąpienie ekspansji spowodowanej reakcją z NaOH i KOH</td>
<td>bełeczki zaprawy dojrzewające nad wodą w temperaturze 38°C ±2°C, w. w. &gt; 95%</td>
<td>pierwszy pomiar po 14 dniach, następnie co jeden miesiąc przez okres kolejnych 6 miesięcy</td>
<td>W metodzie tej może nie powstawać zbyt duża ekspansja, szczególnie w przypadku kruszyw węglanowych</td>
</tr>
</tbody>
</table>
5.1.4. Podsumowanie metod badań reaktywności kruszyw z NaOH i KOH

W celu uporządkowania metod badań reakcji kruszyw z alkaliami podzielono je na trzy zasadnicze grupy. Podział ten schematycznie przedstawiono na rysunku 5.3 [2].

![Diagram](attachment:diagram.png)

**Rys. 5.3. Podział metod badania reakcji alkaliów z kruszywem [2]**


Dzięki badaniom należącym do pierwszej grupy można wykryć potencjalnie reaktywne kruszywo, ale nie uzyskujemy pełnej informacji, jak dane kruszywo zachowa się po zastosowaniu go w betonie. Zaletą badań petrograficznych jest jednak krótki czas ich wykonania, stąd są przydatne do wykrywania kruszywa potencjalnie reaktywnego.
5. Metody badań reaktywności kruszyw

Pełną informację o możliwości reagowania kruszywa z wodorotlenkami sodu i potasu w betonie dają dopiero badania z drugiej grupy. Obiektem tych badań jest ważniejsze oddziaływanie kruszyw ze środowiskiem, w którym będą się znajdować (matryca zaczynu cementowego), czego następnie jest zmiana długości próbek (bełczek o różnych rozmiarach). Badania te pozwalają także obserwować rozwój spęków na powierzchni zaprawy lub betonu, lecz ta analiza wchodzi w trzeci obszar badań.

W drugiej grupie badań można wyróżnić dwie podgrupy. Do pierwszej z nich należą badania przyspieszone, w których zmienia się skład mieszanki betonowej i warunki w jakich zachodzi reakcja alkaliów z kruszywem. Do drugiej podgrupy zalicza się badania próbek betonowych wykonanych w warunkach zbliżonych do eksploatacyjnych (ASTM C1293 [7], RILEM AAR-3 [11]). Z tych względów są to badania trwające najdłużej.


Celem badań należących do trzeciej grupy jest uzyskanie informacji o przyczynach ekspansji betonu oraz o mikrostrukturze betonu lub zaprawy. W tym celu są prowadzone badania rentgenograficzne oraz obserwacje pod elektronowym mikroskopem skaningowym połączone z mikroanalizami rentgenowskimi.

5.2. Metody oceny dodatków i domieszek zapobiegających reakcji alkaliów z krzemionką

Zmodyfikowane wersje metod oceny reaktywności kruszywa mogą być zastosowane do wyboru właściwych metod zapobiegawczych, w tym dodatków mineralnych do cementu i azotanu litu, stosowanego jako domieszka chemiczna. W tablicy 5.5 zestawiono najbardziej popularne metody badań wykorzystywane do oceny dodatków mineralnych i domieszek chemicznych [35].

W tablicy 5.5 zostały podane również wybrane informacje o każdej metodzie badań. Metoda badań ASTM C441 [36] zasadniczo jest taka sama jak podana w ASTM C227, małe próbki z zaprawy (przekrój 25 x 25 mm) są przechowywane w temperaturze 38°C, próbki te przygotowuje się z „modelowym” kruszywem reaktywnym np. szkłem pyreksowym. Metoda pozwala ocenić, jakie dodatki mineralne zmniejszają ekspansję związaną z reakcją alkaliów z krzemionką. W tablicy 5.6 podano graniczną ekspansję zawartą w ASTM C441 oraz opis dodatków mineralnych.
**Tablica 5.5. Metody badań stosowane do oceny dodatków mineralnych i domieszek chemicznych zapobiegających reakcji alkaliów z kruszywem według norm ASTM**

<table>
<thead>
<tr>
<th>Metody badań</th>
<th>Komentarz</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C441: Normowa metoda badań skuteczności dodatków mineralnych w zapobieganiu ekspansji związanej z reakcją alkaliów z krzemionką [36]</td>
<td>• metoda badania beleczek z zaprawy, przeznaczona do oceny skuteczności dodatków mineralnych w zmniejszeniu ekspansji alkaliów z krzemionką • stosuje się cement o dużej zawartości sodu i potasu oraz szkło pyreksowe • metoda zawodna z powodu stosowania szkła pyreksowego, na które duży wpływ mają warunki badań, a ponadto zawiera sód i potas, rozpuszczane podczas badań; wyniki uzyskane tą metodą nie wykazują dobrej korelacji z badaniami mieszanek betonowych zawierających naturalne kruszywa [18]</td>
</tr>
</tbody>
</table>

| ASTM C1567: Normowa metoda badań do oceny próbek betonu z ocenianym kruszywem i cementem z dodatkami (szybka metoda badania beleczek zaprawa) [37] | • metoda badań beleczek z zaprawy, pierwotnie opracowana do oceny reaktywności kruszywa • beleczki są zanurzone w roztworze 1 N NaOH w ciągu 14 dni • powinna być stosowana tylko w przypadku kruszyw, w stosunku do których korelacja wyników ASTM C1260 [5] i ASTM C1293 [7] została ustalona • ASTM C1567 może być stosowana do oceny domieszki z azotanu litu, choć ASTM C1293 uważa się za lepszą metodę oceny wymaganego dodatku azotanu litu do betonu |

| ASTM C1293: Normowa metoda badań kruszywa przez określenie zmiany długości próbek betonowych w następstwie reakcji alkaliów z kruszywem [7] | • zmodyfikowana wersja badania belek betonowych pozwala ocenić próby dodatków mineralnych, cementów z dodatkami i azotanu litu • czas trwania wynosi dwa lata, a graniczna ekspansja 0,04% |

**Tablica 5.6. Graniczna ekspansja podana w ASTM C441 oraz rodzaj dodatków mineralnych**

<table>
<thead>
<tr>
<th>Norma i rodzaj</th>
<th>Graniczna ekspansja</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C618: Popiół lotny i naturalna pucołan [38]</td>
<td>ekspansja próbek zawierających cement z dodatkami po 14 dniach &lt; ekspansji zaprawy z cementu o Na₂Oₑ ≤ 0,60%</td>
</tr>
<tr>
<td>ASTM C989: Granulowany żużel wielkopiecowy [39]</td>
<td>przy znanej proporcji cementu i żużła: ekspansja po 14 dniach ≤ 0,020%</td>
</tr>
<tr>
<td>ASTM C1240: Pył krzemionkowy [40]</td>
<td>przy zawartości 90% cementu i 10% pyłu krzemionkowego po 14 dniach ekspansja ≤ 20% ekspansji zaprawy kontrolnej z cementu o dużym Na₂Oₑ</td>
</tr>
<tr>
<td>ASTM C595: Cement z dodatkami mineralnymi [41]</td>
<td>po 14 dniach ekspansja zaprawy z cementu z dodatkami mineralnymi ≤ 0,020% i po 56 dniach ekspansja zaprawy z cementu z dodatkami mineralnymi ≤ 0,060%</td>
</tr>
</tbody>
</table>
5. Metody badań reaktywności kruszyw

Metoda ASTM C441 ma tę samą wadę opisaną wcześniej w przypadku ASTM C227, dotyczącą ługowania sodu i potasu z bełcek z zaprawy. Hobbs [42] wykazał także, że ilość dodatku mineralnego potrzebna do zmniejszenia ekspansji związanego ze szkłem pyreksowym nie wykazuje korelacji z zawartością dodatku potrzebnego do zmniejszenia ekspansji z kruszywem naturalnym, stosowanym w konstrukcjach betonowych. Z powodu problemów ze zmiennym składem i uziarnieniem szkła pyreksowego, dużym rozrzutem wyników badań oraz brakiem korelacji wyników dotyczących szkła pyreksowego i kruszywa naturalnego, metoda ta nie jest zalecana do oceny dodatków mineralnych, stosowanych w przypadku reakcji alkaliów z krzemionką w betonie.

Norma ASTM C1567 stanowi zmodyfikowaną wersją ASTM C1260 i jest przeznaczona do oceny dodatków mineralnych. W metodzie tej stosuje się ten sam rodzaj próbek, te same warunki badań i występują te same problemy, jak w badaniu według normy ASTM C1260. Przede wszystkim, jeżeli oceniane kruszywo nie daje jednoznacznych wyników badań przeprowadzonych według ASTM C1260, to powinno być oczywiste, że metoda ASTM C1567 nie nadaje się do oceny zachowania się kruszywa w przypadku równoczesnego stosowania dodatku mineralnego w spojewie w celu wyznaczenia ilości dodatku potrzebnego do zmniejszenia ekspansji.

Korelacja wyników ekspansji uzyskanych w próbkach przeprowadzonych metodami ASTM C1260 i ASTM C1293, a dotycząca danego kruszywa została przedstawiona na rysunku 5.4.

Rys. 5.4. Porównanie ekspansji oznaczonej metodą ASTM C1260 i ASTM C1293 w celu ustalenia, czy metoda szybka jest odpowiednią do oceny środków zapobiegawczych, w przypadku określonego rodzaju kruszywa [43]
Przed zastosowaniem metody ASTM C1567 w celu oceny działań zapobiegawczych (zastosowanie dodatków mineralnych i domieszek związków litu), zaleca się sprawdzenie korelacji między wynikami badań według metody ultraszybkiej [5] i metody normowej badania ekspansji betonu [7].

Dotychczasowe prace wykazały, że jest na ogół dobra zgodność wyników uzyskanych metodą podaną w ASTM C1567 (ocena w oparciu o 0,10% granicznej ekspansji po 14 dniach) i ASTM C1293 (0,04% granicznej ekspansji po dwóch latach) przy badaniu różnych dodatków mineralnych [44]. Jak wynika z rysunku 5.5 podobne ilości dodatków mineralnych są potrzebne w każdej z tych metod do zmniejszenia ekspansji poniżej wskazanej granicy.

![Rys. 5.5. Porównanie ilości dodatku mineralnego potrzebnego do zmniejszenia ekspansji do wartości granicznej w badaniach normowych według ASTM C1567 (dane na odciętej) i ASTM C1293 (dane na rzędnej) [44]](image)

Metoda zawarta w normie ASTM C1293 jest najbardziej odpowiednia i dokładna, aby określić wymagane ilości azotanu litu jako domieszki do betonu w celu obniżenia ekspansji poniżej wielkości granicznej wynoszącej 0,04%, po dwóch latach. Metoda zawarta w normie ASTM C1260, w obecnej formie nie nadaje się do badania wpływu związków litu, gdyż wpływ dodanego do beleczek z zaprawy litu będzie zdolny do zmniejszenia ilości dodatku azotanu litu jako domieszki do betonu. W wytycznych badania wpływu związków litu zmodyfikowaną metodą ASTM C1260 uznać się, że nie wszystkie kruszywa mogą być badane tą metodą, gdyż generowane są błędne wyniki, rozbijone z rzeczywistymi wynikami badań beleczek betonowych i kostek poddanych ekspozycji w warunkach eksploatacyjnych. Opis metod oceny azotanu litu w zmodyfikowanej metodzie ASTM C1260 podaje Tremblay i inni [45]. Zmodyfikowaną, przyspieszoną metodę badań wymaganego dodatku azotanu litu pokazuje schemat przedstawiony na rysunku 5.6.
5. Metody badań reaktywności kruszyw

Przebieg badania kruszywa w dwóch zaprawach:
- zaprawa kontrolna (ekspansja po 28 dniach = E1)
- zaprawa z litem: [Li]/[Na + K] = 0,74 w beleczkach i [Li]/[Na] = 0,148 w roztworze, w którym zanurzone są próbki (ekspansja po 28 dniach = E2)

\[
\text{gdy } \left| \frac{E2 - E1}{E1} \right| < 0.1
\]

Rys. 5.6. Zasady zastosowania zmodyfikowanej przyspieszonej metody badań beleczek z zaprawy do określenia dodatku azotanu litu (wyrażonego jako [Li] / [Na + K]) w celu ograniczenia ekspansji betonu [45]

Zmodyfikowana wersja normy ASTM C1293 pozwala na ocenę dodatków mineralnych jako składników zapobiegających lub ograniczających szkodliwą ekspansję. Metody badań są identyczne jak te opisane wcześniej dla oceny reaktywności kruszywa (patrz punkt 5.1), z wyjątkiem dwóch istotnych zmian: czas trwania badania wynosi dwa lata i dodatek mineralny może być stosowany jako zamiennik cementu portlandzkiego. Ponadto podczas badania dodatków mineralnych znaczenie zwiększających wodoodporność (pył krzemionkowy), ASTM C1293 dopuszcza zastosowanie domieszek redukujących ilość wody, przy zapewnieniu odpowiedniej urabialności. Z drugiej strony, jeśli stosuje się dodatki mineralne, które zmniejszają wodoodporność (popiół lotny) dopuszcza się stosowanie domieszki modyfikującej lepkość w celu zminimalizowania segregacji składników mieszanek.

Badanie dodatków mineralnych przy zastosowaniu ASTM C1293 obarczone jest takimi samymi wadami, jak podczas badania kruszyw w beleczkach betonowych. Następuje ługowanie alkaliów z beleczek w okresie dwuletnich badań. Wątpliwości też budzi wydłużenie okresu badań do dwóch lat, stąd przy czym postępowaniu metody przyspieszonej ASTM C1567 badania beleczek z zapraw, zalecane jest przyjmowanie granicznej ekspansji 0,1% po 14 dniach, co wykazuje najlepszą korelację z poziomem ekspansji wynoszącej 0,04% po dwóch latach badania dodatków mineralnych zgodnie z ASTM C1293 [46]. Wydłużenie okresu badań zapraw z dodatkami do 28 dni powoduje zwiększenie ekspansji średnio o 1,5%.
Może to wskazywać na konieczność zwiększenia wymaganego dodatku w celu zmniejszenia ekspansji, co może nie być korzystne ze względu na inne właściwości betonu (np. mrozoodporność).

Dla oceny wpływu dodatku mineralnego na reakcję alkaliów z krzemionką lub w celu ustalenia minimalnej zawartości dodatku mineralnego (lub kombinacji dodatków mineralnych) wymaganego do ograniczenia ekspansji kruszywa reaktywnego zalecana jest metoda badania bełczek betonowych (ASTM C1293) lub metoda przyspieszonych badań bełczek z zaprawy (ASTM C1567). Kryteria oceny wpływu dodatku mineralnego na ekspansję próbek zapraw i betonów z kruszywem reaktywnym zamieszczono w tablicy 5.7 [46]. W tablicy 5.8 zestawiono badania stosowane do oceny metod zapobiegających następstwom reakcji alkaliów z kruszywem według RILEM.

**Tablica 5.7. Kryteria oceny połączenia dodatek mineralny – reaktywne kruszywo [46]**

<table>
<thead>
<tr>
<th>Metoda badań</th>
<th>Graniczna ekspansja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badanie bełczek betonowych (ASTM C1293)</td>
<td>≤ 0,040% po dwóch latach</td>
</tr>
<tr>
<td>Szybka metoda badań bełczek z zaprawy (ASTM C1567)</td>
<td>≤ 0,10% po 14 dniach</td>
</tr>
</tbody>
</table>

**Tablica 5.8. Metody badań stosowane do oceny dodatków mineralnych zapobiegających następstwom reakcji alkaliów z kruszywem według metody RILEM**

<table>
<thead>
<tr>
<th>Metoda badań</th>
<th>Komentarz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAR-6: Reaktywność kruszyw – zapobieganie, ocena, określenie i rozpoznanie</td>
<td>Instrukcja rozpoznania i prognoza wystąpienia uszkodzeń spowodowanych reakcją alkaliów z kruszywem w betonach i konstrukcjach betonowych</td>
</tr>
<tr>
<td>AAR-6.1: Reakcje alkaliów z kruszywem w betonie i konstrukcjach</td>
<td>Instrukcja rozpoznania i oceny uszkodzeń spowodowanych reakcją alkaliów z kruszywem w betonie i konstrukcjach betonowych. Część I: Rozpoznanie</td>
</tr>
<tr>
<td>AAR-7.1: Międzynarodowe wskaźówki dla minimalizacji uszkodzeń spowodowanych reakcją alkaliów z krzemionką w betonie</td>
<td>Część I: Reakcja alkaliów z krzemionką</td>
</tr>
</tbody>
</table>

**5.3. Inne metody badań reakcji alkaliów z kruszywem**

Stosowane są także inne metody badań reakcji alkaliów z krzemionką. W ostatnich latach nastąpił rozwój bardzo szybkich metod badań tej reakcji z zastosowaniem autoklawu. Fournier i inni [47] oraz Nishibayashi i inni [48] przeprowadzili
badania zapraw w autoklawach, pozwalające na uzyskanie wyników w ciągu kilku dni (zazwyczaj mniej niż 24 godziny) dzięki wykorzystaniu bardzo dużej zawartości alkaliów (od 2,0 do 3,5% Na2O e w cementie), wysokiego ciśnienia (do 1,03 MPa) i wysokiej temperatury (do 130°C). Fournier i inni [47] stwierdzili, że zastosowanie autoklawizacji jest równie dobry lub nawet lepszą metodą niż bardzo szybka metoda badania beleczek z zaprawy (ASTM C1260) do oceny reaktywności kruszyw. Wykonano niewiele badań beleczek betonowych w autoklawie [48]. Ta metoda ma bardzo duży wpływ na reaktywność kruszyw. Autoklawizacja odbiega od rzeczywistych warunków eksploatacjibetonu, a jej jedyną zaletą jest uzyskiwanie wyników w krótkim czasie.

Metoda badania mikrobeleczek betonowych została wprowadzona przez Xu i innych [49] do badań reaktywności kruszyw węglanowych, a później zastosowano ją do identyfikacji reaktywnych kruszyw krzemionkowych [50]. W metodzie tej są stosowane większe próbki z zaprawy (przekrój 40 mm x 40 mm), co pozwala na badanie większych ziaren kruszywa, przy zachowaniu cech tekstury i składu mineralnego oryginalnego kruszywa grubego.

Badania próbek laboratoryjnych i pobranych z eksploatacji betonu wykazały, że niektóre kruszywa mogą uwalniać znaczne ilości alkaliów do roztworu w porach betonu, co zwiększa prawdopodobieństwo ekspansji oraz destrukcji betonu z kruszywa reaktywnego [51, 52]. Dotychczas jednak brak metod normowych do oceny uwalniania alkaliów z kruszyw. Istnieje powszechne przekonanie, że całąkowita zawartość alkaliów w kruszywie, wynikająca z analizy chemicznej, nie wykazuje zawartości rozpuszczonych wodorotlenków, które powstały z rozpuszczonych składników kruszywa i przeszły do roztworu w porach betonu. Prace Berube i innych [52] wykazały lepsze oszacowanie uwalnianych alkaliów z kruszywa przez pomiar uwalnianego potasu z kruszywa zanurzonego w roztworze wodnym wodorotlenku sodu i potasu uwalniającego sodu z tego samego kruszywa zanurzonego w roztworze wodorotlenku potasu. Metoda ta sprzyja selektywnemu uwalnianiu sodu i potasu z kruszywa, które mogą intensyfikować reakcje alkaliów z krzemionką.

Uwolnienie sodu i potasu z dodatków mineralnych, w szczególności z popiołu lotnego, do roztworu w porach betonu było przedmiotem badań przez wiele lat. Normowa metoda ASTM C311 pozwala na pomiar całkowitej zawartości alkaliów i alkaliów rozpuszczalnych w wodzie w popiołach lotnych. Jednakże badania wykazały, że ASTM C311 nie daje dokładnego pomiaru zawartości alkaliów rozpuszczalnych z popiołu, głównie dlatego, że woda, w której popiół lotny jest zanurzony (pH = 7) jest bardzo różna od bardzo alkalicznego roztworu w porach w betonie (pH zwykle około 13,2). Shehata i Thomas [53] opracowali lepszą metodę pomiaru rzeczywistego uwalniania alkaliów z popiołu lotnego do roztworu w porach w betonie. W metodzie tej próbki stwardniałogę z popiołem lotnym zanurzano...
w roztworze odwzorowującym ten zawarty roztwór w porach w betonie (np. 0,25 mol OH-/dm³). Ługowanie wodorotlenków sodu i potasu z popiołem określono po 90 dniach. Metoda ta pozwala na lepsze oszacowanie uwalniania sodu i potasu z popiołu lotnego do roztworu w porach, w rzeczywistych warunkach.

5.4. Metody badań reakcji alkaliów z węglanami w celu oceny reaktywności kruszywa

Reakcja alkaliów z węglanami opisana w rozdziale 3 jest szczególną formą reakcji wodorotlenków sodu i potasu z kruszywem, która powoduje znaczną ekspanję i uszkodzenia konstrukcji betonowych. Jest to ponadto reakcja, dla której nie znaleziono dotychczas metod zapobiegawczych. Metody skuteczne w stosunku do reakcji alkaliów z krzemionką, takie jak stosowanie cementu o małej zawartości sodu i potasu, lub z dodatkami mineralnymi oraz dodatek związków litu, są nieskuteczne w zmniejszeniu ekspansji spowodowanej reakcją alkaliów z węglanami. Bezpiecznym postępowaniem wobec tej reakcji jest wyeliminowanie stosowania kruszyw podatnych na reakcję alkaliów w produkcji betonu. Zalecane metody oceny kruszyw podatnych na reakcję alkaliów z węglanami opracowane na podstawie kanałskich i europejskich doświadczeń przedstawiono w tablicy 5.9 [54].

Tablica 5.9. Metody oceny kruszyw podatnych na reakcję alkaliów z węglanami [54]

<table>
<thead>
<tr>
<th>Metoda badań</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C295: Normowa metoda badań petrograficznych kruszywa do betonu [3]</td>
<td>• użyteczna do identyfikacji wielu (ale nie wszystkich) składników potencjalnie reaktywnych w kruszywie • wiarygodność badania zależy od doświadczenia i szczegółowych umiejętności petrografo • mineralog skupia się w szczególności na dolomitach wapniastych i wapieniach dolomitycznych zawierających domieszk mineralów ilastych</td>
</tr>
<tr>
<td>CSA A 23.2-26A: Oznaczanie potencjalnej reaktywności alkaliów z węglanami na podstawie składu chemicznego [55]</td>
<td>• oznaczanie zawartości CaO, MgO i Al₂O₃ w próbkach skał węglanowych • naniesienie składu chemicznego na wykres (patrz rysunek 5.2) i klasyfikacja kruszywa jako nieekspansywne lub potencjalnie ekspansywne; zaleca się dodatkowe badania, szczególnie według ASTM C1105</td>
</tr>
<tr>
<td>ASTM C1293: Normowa metoda badań dla kruszywa do betonu przez określenie zmiany długości próbek betonu spowodowanej reakcją alkaliów z krzemionką [7]</td>
<td>• metoda badania opracowana pierwotnie do oceny kruszyw podatnych na reakcję alkaliów z krzemionką • metoda badań może również obejmować reakcje alkaliów z węglanami, jeżeli reaktywne kruszywa występują w mieszance – wymagane jest potwierdzenie przez mineraloga, że reakcja alkaliów z węglanami jest przyczyną części lub całości mierzonej ekspansji</td>
</tr>
</tbody>
</table>
5. Metody badań reaktywności kruszyw

ASTM C1105: Normowa metoda badań zmian długości próbek betonowych spowodowanej reakcją alkaliów z węglanami [56]
- stosowana jest podobna metoda jak ASTM C1293, z wyjątkiem mniejszej zawartości alkaliów w cemencie. Reakcja alkaliów z krzemionką nie występuje przy mniejszej zawartości Na₂O, a cała obserwowana ekspansja jest spowodowana reakcją alkaliów z węglanami
- graniczna ekspansja wynosi 0,025% po 6 miesiącach lub 0,030% po 1 roku. Kruszywa przekraczające te granice są zaliczane do reaktywnych (reaktywne węglany) i nie powinny być stosowane w betonie

Metoda AAR-5: Szybkie badanie kruszyw węglanowych [57]
- wydłużenie beleczek z zapraw lub z betonów przechowywanych przez 28 dni w 1M NaOH w temperaturze 80±2°C
- kruszywo jest zaliczane do reaktywnego, gdy osiągnie ekspansję w przedziale 0,01-0,1%

Przy ocenie podatności kruszywa na reakcje alkaliów z węglanami zaleca się badania petrograficzne [3]. Kruszywami podatnymi na tę reakcję są zazwyczaj dolomity wapniaste i wapienie dolomityczne zawierające minerały ilaste. Przykładową budowę petrograficzną dolomitu podatnego na reakcję z KOH i NaOH pokazano na rysunku 5.7.

Rys. 5.7. Charakterystyczna tekstura dolomitu – romboedry dolomitu otoczone drobnoziarnistą matrycą złożoną z minerałów ilastych, kalcytu i krzemionki [58]

Jeśli kruszywo łamane produkuje się ze skały węglanowej, to jego podatność na reakcję z wodorotlenkami sodu i potasu może być oceniana na podstawie składu chemicznego próbek skały [55]. Badanie polega na oznaczeniu zawartości tlenku wapnia (CaO), tlenku magnezu (MgO) i tlenku glinu (Al₂O₃) w próbkach skalnych oraz określeniu, w którym obszarze wykresu zależności stosunku CaO/MgO od zawartości Al₂O₃, mieści się znaleziony skład (rys. 3.2). Jeśli mieści się on w jed-
nym z dwóch przedziałów określonych jako „kruszywo uznawane za nieekspan- sywne” na rysunku 3.2, kruszywo węglanowe jest potencjalnie nireaktywne z wo- dorotlenkami sodu i potasu i może być badane w celu określenia możliwości wy- stąpienia reakcji alkaliów z krzemionką, przy zastosowaniu opisanych wcześniej metody badań. Jeśli skład mieści się w zakresie „kruszyw uważanych za potencjal- nie ekspansywny”, kruszywo węglanowe jest potencjalnie reaktywne z wodorotlo- tenkami sodu i potasu, i powinno być poddane dalszej ocenie. Istnieją dwa rodzaje uzupełniających badań. Po pierwsze, ocena kruszywa na podstawie badania bele- czek z betonu według ASTM C1293, z jednoczesnym określeniem potencjału re- akcji alkaliów z węglanami lub alkaliów z krzemionką. Po zakończeniu badań re- aktywności beleczki poddaje się ocenie petrograficznej w celu określenia możliwo- ści zajścia reakcji alkaliów z węglanami. Druga możliwość, to zastosowanie meto- dy badania beleczek betonu z kruszywem węglanowym, które reaguje z NaOH + KOH, stosując metodę ASTM C1105 [56], w której zmniejsza się zawartość alka- liów, określając tylko prawdopodobieństwo reakcji alkaliów z węglanami.

Jeżeli ekspansja betonu jest większa lub równa 0,025% po 6 miesiącach i 0,030% po 1 roku, kruszywo węglanowe trzeba ocenić jako reaktywne i nie może być stosowane w betonie. Jeżeli ekspansja betonu przekracza normową ekspansję graniczną, należy ocenić możliwość zajścia reakcji alkaliów z krzemionką.

W metodzie oceny reaktywności kruszywa, zaproponowanej przez RILEM, du- żą uwagę poświęca się ocenie kruszyw węglanowych. Metoda AAR-5 („szybkie badanie kruszyw węglanowych”) szacuje stopień reaktywności na podstawie po- miarów wydłużenia liniowego beleczek z zapraw lub betonów przechowywanych przez 28 dni w 1M NaOH, w temperaturze 80±2°C. Kruszywo zalicza do reaktywnych, gdy osiągnę ekspansję w przedziale 0,01-0,1% [57].

Kryteria reaktywności kruszyw węglanowych uwzględniają obydwu procesy re- akcji alkaliów z kruszywem (alkaliów z krzemionką i alkaliów z węglanami) oraz odnoszą się do wyników uzyskanych metodą AAR-2, obejmującą szybką metodę badań ekspansji [10].

Możemy uważać, że powodem destrukcji betonu jest reakcja alkaliów z krze- mionką, jeżeli ekspansja spowodowana reakcją alkaliów z kruszywem przekracza 0,08%, a wielkość ekspansji oznaczona metodą AAR-5 jest mniejsza od ekspansji w metodzie AAR-2. Natomiast gdy ekspansja w metodzie AAR-5 jest większa niż w metodzie AAR-2, istnieje możliwość jednoczesnego występowania reakcji alka- liów z węglanami i reakcji alkaliów z krzemionką.

W przypadku ekspansji mniejszej od 0,08% jest możliwość zajścia reakcji alka- liów z węglanami, gdy ekspansja oznaczona w metodzie AAR-5 jest większa niż w metodzie AAR-2. Dalsze badania nie są wymagane, gdy ekspansja w metodzie AAR-5 jest mniejsza niż w AAR-2 [31].
5. Metody badań reaktywności kruszyw

Literatura


5. Metody badań reaktywności kruszyw

[34] Konopska-Piechurska M., Jackiewicz-Rek W., Reaktywność alkaliczna kruszyw jako czynnik zagrażający trwałości konstrukcji betonowych w Polsce, Materiały XXVI Konferencji Naukowo-Technicznej „Awarie Budowlane 2013”.


[36] ASTM C441, Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete Due to the Alkali-Silica Reaction, 2011, p. 3.


Diagnostyka reakcji alkaliów z kruszywem

Reakcja alkaliów z kruszywem w betonie jest traktowana jako duże zagrożenie dla trwałości, zwłaszcza betonowych budowli wodnych oraz nawierzchni i infrastruktury drogowej. Skutki tej szkodliwej reakcji mogą pojawić się już po kilku latach od zakończenia budowy obiektu.

Uszkodzenia elementów konstrukcji betonowych spowodowane reakcją alkaliów z kruszywem mają różne formy, najczęściej występują powierzchniowe pęknięcia, a czasami występuje wypływanie żelu na odsłoniętej powierzchni. Takie uszkodzenia stwierdzono w wielu krajach, szczególnie o gorącym i wilgotnym klimacie. Pierwsze uszkodzenia w postaci pęknięć występować w przedziale od kilku miesięcy do kilku lat po zakończeniu budowy. Pęknięcia zwykle zwiększają się i ich szerokość wzrasta z czasem, a miejscowe naprawy są często nieskuteczne. Reakcja alkaliów z kruszywem jest jedną z głównych przyczyn destrukcji betonu i wymaga podejmowania działań minimalizujących jej następstwa.

Typowymi objawami reakcji alkaliów z kruszywem są bezładnie rozmieszczone spękania, a w zaawansowanych przypadkach pękanie spawanych złączy i odlupujące krawędzie betonu. Objawami reakcji alkaliów z kruszywem, widocznymi na elementach betonowych oprócz spęków oraz miejscowych wykruszeń betonu są również odpryski powierzchniowe, zabarwienia powierzchni i żelowie wycieki. Pękanie spowodowane tą reakcją zwykle pojawia się w obszarach o częstym dopływie wilgoci, na przykład w pobliżu linii wodnej na filarach, blisko ziemi na murach oporowych, w pobliżu złączy i wolnych krawędzi chodników, lub filarów czy kolumn narażonych na dostęp wilgoci.

Zainteresowanie reakcją alkaliów z kruszywem w konstrukcjach betonowych wzrosło w ostatnim czasie ze względu na bezpieczeństwo budowli i wysokie koszty napraw, i wymiany uszkodzonych elementów. Jednym z pierwszych obiektów, w którym stwierdzono występowanie reakcji alkaliów z kruszywem była tama w Parker (USA), w 1941 roku.
6.1. Analiza uszkodzeń wybranych konstrukcji betonowych

Wykrycie reakcji alkaliów z krzemionką i ocena jej wpływu na trwałość konstrukcji obejmuje następujące etapy: opis makroskopowy elementów betonowych, pobranie próbek do badań laboratoryjnych, ocena stanu konstrukcji i ryzyka związanego z jej eksploatacją w przyszłości ze względu na postęp reakcji alkaliów z krzemionką [1]. Pierwszym elementem tej procedury jest wizualna obserwacja i opis konstrukcji. Na rysunku 6.1 zamieszczono fotografie przedstawiające fragment filara wiaduktu uszkodzonego w wyniku tej reakcji.

[Rys. 6.1. Spękany beton w następstwie reakcji alkaliów z krzemionką – filar wiaduktu (a), żel wypływający na powierzchnię betonu (b)]

O przebiegu reakcji alkaliów z krzemionką świadcza nie tylko spękania, lecz również żel wypływający na powierzchnię elementów betonowych (ryc. 6.1b). Ekspansja rozpoczyna się tworzeniem żelu w reaktywnym ziarnie kruszywa lub w położonej obok matrycy cementowej. Żel absorbując wodę może wywierać stosunkowo duże ciśnienie sięgające 10 MPa lub nawet większe [2]. Ciśnienie to przekracza wytrzymałość na rozciąganie betonów konstrukcyjnych, wynoszącą na ogół około 10% wytrzymałości na ściskanie. Rysy na powierzchni betonu rozchodzą się bezładnie, a łącząc się tworzą rysunek przypominający mapę [3].

Chociaż powstawanie zmian w postaci wykwitów na powierzchni elementów betonowych jest charakterystyczną cechą reakcji alkaliów z krzemionką nie musi wskazywać na zachodzenie tego procesu. Również inne zjawiska, takie jak działanie mrozu lub przepływ wody przez spękane elementy betonowe, mogą powodować powstawanie osadów powierzchniowych, bez udziału uwodnionego żelu krzemianu sodowo-potasowo-wapniowego.
Rodzaj rozmieszczenia rys w betonie w następstwie reakcji alkaliów z krzemionką zależy od kształtu oraz geometrii elementów betonowych, warunków ekspozycji, rozmieszczenia zbrojenia i pól naprężeń (ograniczeń) występujących w konstrukcji betonowej. Klasycznym przejawem tej reakcji jest mapa spękania (zwana również wzorem spękania), która ma postać losowo zorientowanych rys. Zbrojenie stalowe lub inne ograniczenia wynikające z naprężeń ściskających mogą zmniejszyć ekspansję betonu. Zastosowanie zbrojenia poprzecznego nie powoduje jednak znacznego zmniejszenia pęknięć powierzchniowych, powstających w wyniku tej reakcji. W elementach betonowych o ograniczonych odkształceniach w jednym lub więcej kierunkach, większa ekspansja występuje w kierunku o najmniejszym ograniczeniu i pęknięcia są zorientowane w tym samym kierunku, w którym są mniejsze naprężenia. Przykładem jest nawierzchnia drogowa, na której spękania zwykle są równoległe do krawędzi bocznych, ograniczonych krawężnikami (rys. 6.2a). Na powierzchni elementów konstrukcji betonowej występują również przebarwienia.

Rys. 6.2. Przykłady uszkodzonych elementów betonowych w następstwie reakcji alkaliokrzemionka: a) rysy na nawierzchni betonowej (dominuje podłużne położenie pęknięć), b) pionowe ułożenie pęknięć w kolumnie betonowej, c) podłużne pęknięcia w zbrojonej belce prefabrykowanej [4]
W przypadku żelbetowych słupów pęknięcia mają tendencję do ułożenia w pionie z powodu ograniczeń nałożonych przez główne zbrojenie (rys. 6.2b). W sprężonych dźwigarach mostowych, pęknięcia są zwykle rozemieszone poziomo z powodu ograniczenia przez cięgna równoległe do osi belki (rys. 6.2c).

Przebieg reakcji alkaliów z krzemionką jest zwykle powolny, stąd pogorszenie stanu konstrukcji i ryzyko poważnej awarii jest niskie. Jednocześnie występujące inne czynniki, takie jak przemienne zamrażanie i rozmrzanie, odladzanie lub dostęp jonów siarczanowych mogą zwiększać destrukcję betonu. Z reguły produkty reakcji alkaliów z krzemionką wypływające na powierzchnię elementów betonowych ulegają karbonatyzacji i zawierają głównie węglan wapnia i krzemionkę oraz amorficzną fazę C-S-H wzbogaconą w potas (rys. 6.3).

![Rys. 6.3](image_url)

**Rys. 6.3.** a) mikrostruktura wykwitu na powierzchni betonu z reaktywnym kruszywem, b) mikroanaliza rentgenowska fazy amorficznej „1”, c) mikroanaliza rentgenowska fazy krystalicznej „2” [5]

W materiale pobranym z wykwitów utworzonych na powierzchni betonu stwierdzono obecność amorficznej fazy C-S-H zawierającej potas (rys. 6.3b). Fazie amorficznej towarzyszy faza krystaliczna (rys. 6.3c), która jest kalcytem.

Na powierzchni elementów betonowych niezbrojonych spękania przemieszczają się we wszystkich kierunkach. Przebieg pęknięć wykazujących przypadkową orientację może także powodować skurcz suszenia, cykle zamrażania/rozmrzania i oddziaływanie jonów siarczanowych. Natomiast pękanie płyt chodnikowych i nawierzchni drogowych w wyniku ekspansji spowodowanej reakcją alkaliów z krzemionką zwykle rozpoczyna się w pobliżu wolnych krawędzi i połączeń, gdzie jest duży dostęp wilgoci [6]. Pęknięcia płyt nawierzchni drogowej są zwykle prostopa-
dla do poprzecznych szczelin dylatacyjnych i równoległego do wolnych krawędzi podłużnych drogi. Rysy te również tworzą „mapę”, a w płytach zbrojonych przebiegają równolegle do zbrojenia. Zamieszczony na rysunku 6.4 model rozwoju rys, odnoszący się do nawierzchni drogowych [6], można wykorzystać do opisu tego procesu w innych konstrukcjach.

![Rys. 6.4. Model rozwoju rys w drogowej nawierzchni betonowej, powstałych w wyniku reakcji alkaliów z krzemionką [6]](image)

W pierwszym etapie następuje utrata wilgoci w górnej powierzchni płyty. Powoduje to nieznaczny skurcz i pojawienie się na powierzchni betonu bardzo drobnych rys. W tym etapie nie obserwuje się występowania uwodnionego żelu krzemianowego i ekspansji betonu. Etap drugi może rozpocząć się miesiąc po zaformowaniu betonu lub wiele lat później. Początek tego etapu oznacza tworzenie się żelu uwodnionego krzemianowego i wzrastającą ekspansję, a przyspieszenie postępu reakcji zależy od reaktywności kruszywa i zawartości alkaliów w roztworze w porach betonu. Żel ten tworzy się w pęknięciach wewnątrz ziaren kruszywa lub na ich powierzchni. Początkowo powstający żel może powodować zmniejszenie objętości, lecz wchłaniając wodę, pęcznieje i wywiera ciśnienie na otaczający beton. Na powierzchni betonu powstają rysy. Dalszy przebieg reakcji powoduje zwiększenie rozwarcia rys, co umożliwia łatwiejszy dostęp wody do wnętrza beto-
Korozja wewnętrzna betonu

nu, sprzyjając dodatkowo powstawaniu uwodnionego żel i pęcznieniu. Podczas tej fazy obserwuje się żel wypływając przez powstałe rysy na powierzchnię betonu.

W trzecim etapie, osuszanie powierzchni betonu powoduje spowolnienie reakcji w jej pobliżu. Reakcja postępuje dalej w wilgotnym wnętrzu betonu, przyczyniając się do powstawania i ekspansi żelu, wywierającego naprężenia rozciągające na powierzchnię betonu i zwiększające rozwarcie rys powierzchniowych. Reakcja alkaliów z krzemionką trwa aż do wyczerpania się krzemienia oraz wystarczającego zmniejszenia stężenia jonów sodu i potasu w roztworze. Także utrata wilgoci przez beton powstrzymuje powstawanie i pęcznienie żelu. Proces ten przedstawiony jako model trzystopniowy może być czasowo lub na czas nieokreślony prze rwany, na przykład w okresach suszy. Jednakże jeżeli ponownie powstaną warunki sprzyjające reakcji, zostanie ona wznowiona.

Zazwyczaj najwięcej rys obserwuje się w konstrukcjach, w których beton ma stałe odnawialny dopływ wilgoci, na przykład z ziemi do murów oporowych, płyt chodnikowych lub przez podciąganie kapilarne w kolumnach [7].

![Rys. 6.5. a) mur oporowy z zaawansowaną reakcją alkalia-krzemionka, b) powierzchniowe wykwity żelu uwodnionego krzemianu sodowo-potasowego i węglanu wapnia [5]](image_url)

Na powierzchni muru oporowego występują rysy, głównie równolegle oraz tworzące mapę śpękań. W wielu przypadkach występuje zmiana zabarwienia wokół szczelin, często spowodowana żelem wypływającym z pęknięć na powierzchnię betonu (rys. 6.5). Obszar wzdłuż pęknięć, rozciągający się kilka lub kilkanaście milimetrów od rysy, jest barwy białej do brązowo-szarzy. Uwodniony krzemian sodowo-potasowy lub węglan wapnia występujący wzdłuż pęknięć w betonie, tworzą na powierzchni betonu złogi w kolorze od białego do rdzawoszarego. Materiał wypływający ze szczelin jest białą, żółtą zawiesiną, także bezbarwną cieczą o dużej lepkości, czasem o konsystencji wosku (gumy), który z czasem, w następstwie wysychania i karbonatyzacji, twardnieje. Powstawanie wykwitów w odróż-
6. Diagnostyka reakcji alkaliów z kruszywem

- Nieniu od wypływającego z pęknięć żelu nie wiąże się ze spękaniami występującymi na powierzchni betonu, gdyż są one związane z porowatością otwartą betonu, sprzyjającą migracji wody. Obecność wykwitów nie zawsze świadczy o reakcji alkaliów z krzemionką, gdyż inne przyczyny mogą je powodować, beton jest bowiem materiałem porowatym, w którym zachodzi transport wody. Beton zawiera związki rozpuszczalne w wodzie, przede wszystkim Ca(OH)2 oraz wodorotlenki sodu i potasu, które migrują z wodą na powierzchnię tego kompozytu, gdzie zachodzi odparowanie wody i krystalizacja substancji rozpuszczonej.

- Natomiast siatka spęsków powierzchniowych betonu jest często związana ze skurczem spowodowanym jego wyższaniem, zachodzącym na płaskich powierzchniach, zwłaszcza gdy beton nie był pielęgowany, a poddawany działaniu podwyższonej temperatury w okresie letnim. Pękanie jest zwykle najbardziej dotkliwe w elementach konstrukcji o odnawialnym dopływie wilgoci, jak na przykład z ziemi w wyniku podciągania kapilarnego do murów oporowych (rys. 6.5a), do płyt chodnikowych lub elementów konstrukcji betonowych narażonych na działanie deszczu. Określenie składu chemicznego fazowego osadów powierzchniowych występujących wzdłuż rys, a przede wszystkim obecność krzemionki, pozwala na ustalenie procesów będących przyczyną destrukcji konstrukcji betonowej podczas eksploatacji oraz stopnia ich zaawansowania.

- Ekspansja pojedynczych słabych lub wrażliwych na mroz ziaren kruszywa (takich jak minerały warstwowe w łąkach i glinach, porowate ziarna lub bogate w minerały ilaste) usytuowanych w pobliżu powierzchni betonu ze względu na działanie mrozu może być głównym czynnikiem powstawania powierzchniowych uszkodzeń, nawet w postaci odprysków. Uszkodzenia takie mogą być również spowodowane przez słabe wiązanie zaczynu cementowego z pokrytymi pyłem dużymi ziarnami kruszywa. Reaktywne ziarna kruszywa, pęczniejące w pobliżu powierzchni betonu, mogą również zapoczątkować oderwanie zewnętrznej warstwy betonu, pozostawiając część ziarna kruszywa na dnie kawerny. Odpojone fragmenty z powierzchni betonu pozostawiające otwór od 25 do 50 mm są objawem reakcji alkaliów z krzemionką, a odpryski mogą być spowodowane przez ziarno kruszywa o różnej wielkości (rys. 6.6).

- Odpojone spowodowane reakcją alkaliów z krzemionką powstają w wyniku powstawania naprężeń wytworzonych przez ekspansywny żel pod powierzchnią betonu. Występowanie uwodnionego żelu krzemianowego w miejscu ziarna kruszywa świadczy o reakcji alkaliów z krzemionką. Odpory powstałe w wyniku tej reakcji na posadzce betonowej garażu podziemnego pokazano na rysunku 6.6. W płytach betonowych, ze złą izolacją i umieszczonych na mokrych gruntach wzrasta wilgotność w następstwie podciągania kapilarnego, co może wpływać na reakcję wodorotlenków sodu i potasu z ziarnami kruszywa. Badania pękniętego
ziarna kruszywa w dolnej części kawerny wykazało obecność żelu krzemianu sodowo-potasowo-wapniowego, co wyjaśniło przyczynę powstawania odprysków. Tworzenie się odprysków na powierzchni elementów betonowych jest nie-pożądane, głównie ze względów estetycznych, lecz zazwyczaj nie wpływa na właściwości eksploatacyjne lub trwałość betonu. Uszkodzeniom powierzchniowym spowodowanym przez przemienne zamrażanie i rozmrażanie porowatych, nasączenych wodą ziaren kruszywa położonych w pobliżu powierzchni betonu, nie towarzyszy obecność żelu uwodnionego krzemianu sodowo-potasowo-wapniowego. Na tworzenie powierzchniowych uszkodzeń w następstwie reakcji alkaliów z kruszywem, szczególnie narażone są elementy betonowe o zwiększonej lub zmiennej wilgotności, np. fragment posadzki garażu podziemnego w pobliżu kanału odwadniającego (rys. 6.6a).

![Rys. 6.6. a) odpryski w pobliżu kanalika odprowadzającego wodę, b) rozłupane ziarna kruszywa z żelem uwodnionego krzemianu sodowo-potasowego w dolnej części kawerny [5]](image)

### 6.2. Metody badań uszkodzeń powstałych w następstwie reakcji alkaliów z krzemionką

W diagnostyce uszkodzenia betonu przypisywane są reakcji alkaliów z krzemionką – potwierdzeniem prawidłowości takiego wnioskowania jest stwierdzenie w miejscu uszkodzeń żel u wodnionego krzemianu sodowo-potasowego. Reakcja alkaliów z krzemionką jest przyczyną uszkodzeń jeżeli obserwujemy mikropęknięcia, a oddzielenie kruszywa od zaczyńu jest spowodowane powstawaniem tego żelu. Równocześnie nie można wykluczyć innych przyczyn powstawania uszkodzeń. Omawiana reakcja może przebiegać w obszarze ziaren kruszywa, które są rozpoznawalne jako reaktywne lub potencjalnie reaktywne, i są co najmniej częściowo zastępowane przez żel (rys. 6.7).
Duże ziarna kruszywa podatne na reakcję alkaliów z krzemionką wykazują zwyczaj wewnętrzne spękania, natomiast rysy powstają w otaczającej matrycy betonowej. Jeśli tylko drobne kruszywo jest reaktywne, rysy mogą tworzyć się w matrycy zaczynu cementowego, nie obejmując dużych ziaren kruszywa. Żel może występować w rysach i pustkach, może być również obecny w obszarach wokół krawędzi ziaren kruszywa. Sieć wewnętrznych pęknięć łączących reaktywne ziarna kruszywa wyraźnie wykazuje, że reakcja alkaliów z krzemionką jest przy czynną powstawania spękania (rys. 6.8).

Rys. 6.7. a) uwodniony żel krzemianu potasowo-sodowo-wapniowego otaczający spękane ziarno kruszywa, b) mikroanaliza rentgenowska żelu [8]

Rys. 6.8. Żel powstający wokół ziarna kruszywa i wypływający przez rysy

**Rys. 6.9.** Schemat powstawania rys powierzchniowych w elementach betonowych związanych z reakcją alkaliów z krzemionką podczas cyklicznych zmian warunków podczas eksploatacji [11]

Betonowe elementy, w których wystąpiła reakcja alkaliów z krzemionką poddawane cyklicznej ekspozycji na działanie słońca, deszczu i wiatru, lub fragmenty
filarów betonowych w strefach pływów często wykazują więcej widocznych na powierzchni pęknięć, wynikających z powstających naprężeń rozciągających w „mniej ekspansywnych obszarach” (na powierzchni mniejsze stężenie wodorotlenków sodu i potasu w wyniku procesów ich ługowania z roztworów w porach betonu) warstw powierzchniowych, w następstwie naprężeń spowodowanych ekspansją wewnętrz rdzenia betonu (rys. 6.9) [9, 10].

6.3. Przemieszczenia i deformacje spowodowane ekspansją

Rozmiar uszkodzeń spowodowanych reakcją alkaliów z krzemionką często różni się w poszczególnych elementach konstrukcji betonowych, co powoduje następujące niebezpieczeństwa:
- ruch względny sąsiednich elementów betonowych lub konstrukcji zespolonych,
- ugięcie, zamknięcie złączy związane z wyciskaniem lub wytłaczaniem mas uszczelniających,
- wykruszenie betonu na złączach.

![Rys. 6.10. a) przemieszczenie stykających się fragmentów balustrady w konstrukcji mostu będących następstwem reakcji alkaliów z krzemionką [10]. b) ekspansja powodująca wykruszenia na złączach w nawierzchni betonowej, zawierającej reaktywne kruszywo](image)

Należy mieć na uwadze, że odkształcenia w konstrukcjach betonowych mogą być wywołane szeregiem różnych przyczyn, obejmujących następujące zjawiska: naprężenia, różnice temperatury lub wilgotności, różnice skurczu, wpływ ciężaru i posadowienia, ciśnienie hydrauliczne, pelzanie, udar i wibracje. Jednak potwierdzeniem, że przyczyną obserwowanych uszkodzeń betonu była reakcja alkaliów z krzemionką jest występowanie żelu uwodnionego krzemianu sodowo-potasowego.
### 6.4. Kryteria oceny trwałości betonu

Wskaźnikiem umożliwiającym przewidywanie zagrożenia betonu dalszym postępem reakcji kruszywa z alkaliами w budowlach betonowych może być zawartość wodorotlenków sodu i potasu w roztworze w porach betonu oraz ekspansja próbek betonu pobranych z konstrukcji, oznaczona metodą szybką. Uzyskane wyniki badań mogą być wykorzystane do prognozowania trwałości betonu w użytkowanych obiektach budowlanych ze stwierdzonym występowaniem reakcji alkaliów z kruszywem, jako przyczyną destrukcji. W tablicy 6.1 zamieszczono schemat przedstawiający korelację wyników badań próbek zapraw uzyskanych szybką metodą i ekspansją próbek betonu, która najlepiej odzwierciedla zachowanie się betonu w konstrukcji.

<table>
<thead>
<tr>
<th>Kryteria oceny betonu</th>
<th>Stopień ekspansji</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekspansja beleczek betonu po 1 roku [%]</td>
<td></td>
</tr>
<tr>
<td>&lt; 0,004</td>
<td>niereaktywne</td>
</tr>
<tr>
<td>0,004-0,02</td>
<td>mało reaktywne</td>
</tr>
<tr>
<td>0,02-0,03</td>
<td>reaktywne</td>
</tr>
<tr>
<td>&gt; 0,03</td>
<td>bardzo reaktywne</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metoda szybka (po 14 dniach) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ekspansja</td>
</tr>
<tr>
<td>&lt; 0,1</td>
</tr>
<tr>
<td>0,1-0,25</td>
</tr>
<tr>
<td>&gt; 0,25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stężenie wodorotlenków sodu i potasu w fazie ciekłej [mmol/dm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stężenie wodorotlenków sodu i potasu</td>
</tr>
<tr>
<td>&lt; 250</td>
</tr>
<tr>
<td>250-350</td>
</tr>
<tr>
<td>&gt; 350</td>
</tr>
</tbody>
</table>

stopień ekspansji = największsa ekspansja po 1 roku
lub
stopień ekspansji = stopień reaktywności x wskaźnik zawartości alkaliów
L i t e r a t u r a

Wewnętrzna korozja siarczanowa

Korozja siarczanowa betonu jest znana od bardzo dawna, a jej przyczyną może być woda morska lub inne zewnętrzne źródła siarczanów. Natomiast przyczyną wewnętrznej korozji siarczanowej betonu jest opóźnione powstawanie ettringitu (rys. 7.1). Korozja siarczanowa betonu jest procesem bardzo złożonym, w którym biorą udział czynniki fizyczne i chemiczne.

Rys. 7.1. Schemat przyczyn wewnętrznej korozji siarczanowej betonu
Procesy związane z krystalizacją ettringitu w betonie należą do nie w pełni wyjaśnionych. Tworzenie pierwotnego ettringitu w początkowym etapie hydratacji cementu jest postrzegane jako pożądany efekt ponieważ umożliwia regulację czasu wiązania cementu i przyczynia się do wzrostu jego wytrzymałości, natomiast niszcząca rola jest często związana z opóźnionym jego powstawaniem (w literaturze angielskiej DEF, czyli delayed ettringite formation) w stwardniałym betonie. Powstający podczas tej reakcji ettringit jest ekspansywny i może prowadzić do obniżenia trwałości betonu, a nawet do destrukcji elementów betonowych.

Na początku lat 80. XX wieku wystąpiły masowe uszkodzenia strunobetonowych podkładowych w USA i w Niemczech, które były spowodowane wewnętrzną korozją siarczanową betonu powiązaną z opóźnionym powstawaniem ettringitu. Te prefabrykowane elementy betonowych były poddawane obróbce cieplnej w temperaturze przekraczającej 70°C, a ich eksploatacja następowała w środowisku o dużej wilgotności. Były to głównie betony wysokiej jakości, dużej wytrzymałości i małej porowatości. Rysy i pustki w tych elementach prefabrykowanych, wykazujących uszkodzenia związane z naprężeniem rozciągającym zawierały ettringit w składzie fazowym zaczynu.

Stwierdzono, że ettringit nie jest trwały w warunkach podwyższonej temperatury, a więc nie powstaje w pierwszych dniach hydratacji cementu. Często także obserwuje się spękania spowodowane ettringitem w uszkodzonych masowych elementach betonowych, które nie były poddawane obróbce cieplnej (rys. 7.2).

Powtarzające się uszkodzenia prefabrykowanych podkładowych kolejowych spowodowały rozpoczęcie podstawowych badań zmierzających do wyjaśnienia przy czyn opóźnionego powstawania ettringitu. Opóźnione powstawanie ettringitu może występować w betonach poddawanych naparzaniu w temperaturze przekraczającej
70°C, a także w betonach nienaparzanych, w których temperatura wewnętrz betonu przekracza ten poziom, w wyniku dużego ciepła hydratacji. Ekspansja powstaje w wyniku tworzenia kryształów ettringitu o submikroskopowych wymiarach w małych porach w zaczynie cementowym.

7.1. Hipotezy ekspansji betonu związaną z opóżnionym powstawaniem ettringitu

Najwięcej kontrowersji wywołuje problem mechanizmu ekspansji. Obecnie jest kilka głównych hipotez wyjaśniających mechanizm ekspansji betonu, spowodowanej opóźnionym powstawaniem ettringitu. Jedna z nich zakłada, że ekspansję po-woduje powstawanie otoczek wokół kruszywa, złożonych ze ścieśle upakowanych, dużych kryształów ettringitu, nazywanego „masywnym ettringitem” (rys. 7.2 – warstwa E) [2]. Natomiast inna hipoteza podaje jako przyczynę ekspansji powstanie nanometrycznych kryształów ettringitu w żelu C-S-H [3], a powstawanie otoczek złożonych z kryształów ettringitu traktuje jako proces wtórny. W dyskusjach nad mechanizmem opóźnionego powstawania ettringitu rozważa się także, czy pustki w strefie kontaktowej kruszywo-zaczyn, zwykle wypełnione kryształami ettringitu, są spowodowane przez naprężenie wytworzone wzrostem tych kryształów lub ciśnieniem krystalizacji tylko w bardzo małych mikroporach.

7.1.1. Hipoteza związaną z ciśnieniem wywołanym wzrostem kryształów

ci uważają, że ciśnienie ekspansji powstaje w wyniku opóźnionej krystalizacji ettringitu z fazy kolooidalnej, bezpośrednio na powierzchni ziaren kruszywa, z utworzeniem grubej warstwy kryształów, zorientowanych prostopadle do powierzchni kruszywa, jak to wykazała Owsiak [7] (rys. 7.3).

Obserwowane strącanie się ettringitu w rysach, porach powietrznych i strefie kontaktowej z kruszywem jest wynikiem klasycznego przebiegu procesu starzenia, znanego jako „dojrzewaniem Oswalda”, które jest wynikiem rozpuszczania drobnych kryształów ettringitu w roztworze i następną rekrystalizacją względnie dużych kryształów, w dostępnych większych przestrzeniach.


Według Diamonda [9] ciśnienie krystalizacji może wiązać się raczej z naprężeńiem wytwarzonym przez wzrost kryształów w rysach czy w wierzchołkach.
niz w zaczynie cementowym. Wykazał on także, że długość i geometria rys w betonie jest wynikiem naprężeń oraz że tylko niewielkie ciśnienie jest konieczne do propagacji rys wcześniej wytworzonych przez inny mechanizm niszczący, poprzedzający opóźnione powstawanie ettringitu.

7.1.2. Hipotezy ekspansji zaczynu


Natomiast Johansen i współautorzy [10], jako pierwsi, wysunęli hipotezę o jednolitym pęcznieniu zaczynu cementowego, nie precyzując jednak mechanizmu jego powstawania. W wyniku tego pęcznienia powstają pustki wokół ziaren kruszywa, których szerokość jest w przybliżeniu proporcjonalna do wielkości tych ziaren. Niektóre z tych luk mogą być następnie wypełnione ettringitem w wyniku jego rekryystalizacji, spowodowanej rozpuszczaniem małych krystalitów i powstawaniem dużych kryształów w wolnych objętościach betonu (tak zwany efekt starzenia Oswalda). Rekryystalizacja ettringitu wokół ziaren kruszywa jest procesem wtórnym, a ekspansja jest wynikiem pęcznienia matrycy cementowej.

Również Skalny i współautorzy [11] twierdzą, że stwardniały zaczyn cementowy rozszerzający się, odsuwa się od granicy z nierozszerzającym się kruszywem, w strefie przejściowej kruszywo-zaczyn tworzą się w wyniku tego procesu pustki o szerokości proporcjonalnej do wielkości tych ziaren. Stąd powszechnie przyjmuje się, że brzeg rozszerzającego się zaczynu cementowego jest odwzorowaniem zarysu ziarna kruszywa. Zależność między szerokością pustek wokół ziaren kruszywa i ich średnią ustalił Pade i współautorzy [12] podając, że w pęczniejcej zaprawie zależność między szerokością pustek a średnią ziaren kruszywa jest funkcją liniową o współczynniku nachylenia 0,008. Całkowity pomiar ekspansji odpowiadający jednokierunkowemu wydłużeniu próbek do sumy szerokości pustek wokół ziaren kruszywa, jest zależnością liniową o współczynniku nachylenia równym 2. Obliczona według tych zależności ekspansja wynosiła 1,6% i była prawie równa ze zmierzoną, wynoszącą 1,54%.
Hipoteza Johansona jest zgodna z mechanizmem przedstawionym przez Famy i Taylora [3], którzy również obserwowali w zaprawach o różnym stopniu ekspansji występowanie pustych otoczek wokół ziaren kruszywa, których szerokość była zależna od stopnia ekspansji. Wynikami tych doświadczeń dodatkowo potwierdzono wiarygodność hipotezy ekspansji zaczynu.


Taylor i współautorzy [16] uważają, że na ekspansję mają wpływ różne w budowie strefy przejściowej kruszywo-zaczyn oraz miejscowe zróżnicowanie stopnia hydratacji cementu. Scrivener i współautorzy [17], przedstawiając symulację liczbową modelu rys tworzonych w wyniku jednolitej ekspansji zaczynu, wykazali, że może powstawać całkowicie losowy model rys pomimo jednoczesnego występowania początkowych rys w strefie kontaktowej kruszywo-zaczyn. Ponadto potwierdzeniem hipotezy ekspansji zaczynu jest występowanie ekspansji, spowodowanej opóź-
nionym powstawaniem ettringitu, w przypadku której obecność ziaren kruszywa nie jest warunkiem koniecznym. Odler i Chen [18] obserwowali znaczną ekspansję za-

Drugą przyczynę ekspansji upatruje się w powstawaniu nanometrycznych kryształów ettringitu w żelu C-S-H. Wysunęła ją Famy [3], która wykazała, że zewnętrzny żel C-S-H zawiera po procesie naparzania, zaadsorbowane jony siarczanowe i glinianowe, w przypadku tych ostatnich głównie w formie roztworu stałego. Można przypomnieć, że ten zewnętrzny żel C-S-H tworzy się w objętości zajmowanej w zaczynie początkowo przez wodę w wyniku hydrolizy alitu, w czym głównie biorą udział najmniejsze ziarna cementu. W czasie dojrzewania zaczynu w wodzie jony siarczanowe przechodzą do roztworu i reagują z uwodnionymi gli-


7.1.3. Wpływ powstającego ettringitu na ekspansję

Jak wiadomo ciśnienie krystalizacji może wystąpić jeżeli krystalizacja przebiega w mikroobszarze o małej porowatości, obok którego nie ma pustek, w których kryształy mogą wzrastać swobodnie. Jest to znana zależność i dlatego może budzić wątpliwości hipoteza o powstawaniu ciśnienia w przypadku krystalizacji „masywnego ettringitu”, który powstaje wokół ziaren kruszywa, w otoczkach o dużej objętości.

Fu i inni [20], analizując zależność pomiędzy energią swobodną powstawania zarodków a naprężeń rozcigującym na granicy faz, stwierdzili, że zarodki kryształów łatwiej się tworzą w wierzchołku rysy niż na powierzchni fazy. Nastę-

Korozja wewnętrzna betonu

**Literatura**


Korozja wewnętrzna betonu


7. Wewnętrzna korozja siarczanowa


Czynniki wpływające na trwałość ettringitu

8.1. Wpływ temperatury i pH roztworu porowego

Przyczynę ekspansji spowodowanej opóźnionym powstawaniem ettringitu w zaczynie cementowym wyjaśnia się w oparciu o trwałość ettringitu. Na trwałość uwodnionych siarczanoglinianów wapnia wpływa zarówno pH, jak i temperatura roztworu. Te parametry kontrolują równowagę faz i ich przemiany w układzie.

Tworzenie ettringitu pierwotnego z C3A i gipsu, w obecności wodorotlenku wapnia, po dodaniu wody przebiega zgodnie z reakcją:

\[ 3\text{CaO} \cdot \text{Al}_2\text{O}_3 + 3\text{CaSO}_4 \cdot 2\text{H}_2\text{O} + 26\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{CaSO}_4 \cdot 32\text{H}_2\text{O} \quad (8.1) \]

Reakcja ta kończy się w zaczynie cementowym, gdy stężenie siarczanów potrzebne do tworzenia ettringitu zmniejszy się poniżej granicznej wartości. Po wyzerpaniu gipsu glinian trójwapniowy ulega szybkiej hydratacji, równocześnie ettringit przechodzi w monosiarczan oraz mogą powstawać roztwory stałej między C3A i H2O i C4AH13. Zakładając, że zawartość C3A w cementach portlandzkich wynosi około 10%, do pełnego przereagowania glinianu w ettringit konieczna jest zawartość 9,1% SO3 pochodząca z 19% gipsu. Jednak zgodnie z PN-EN 197-1 [1], zawartość siarczanu w przeliczeniu na SO3 jest ograniczona, wynosi maksymalnie od 3,5 do 4%, zależnie od typu i klasy cementu, co uzasadnia występowanie w zaczynie cementowym monosiarczanu i jego roztworów stałych z uwodnionymi gli- nianami wapniowymi.

Rozkład ettringitu w podwyższonej temperaturze przebiega szybciej przy dużej zawartości alkaliów, ponieważ ze zwiększeniem stężenia alkaliów w fazie ciekłej dla zapewnienia trwałości ettringitu konieczna jest większa zawartość siarczanów w roztworze [3]. Rozkład pierwotnego ettringitu nie jest całkowity i w stwardniolnym betonie występują zarówno ettringit, jak i monosiarczan (rys. 8.1).

Podczas pierwszych godzin hydratacji pokrój i wielkość kryształów ettringitu i monosiarczana na ogół zmieniają się w zależności od składu roztworu, co ma wpływ na wiązanie cementu [4].
W betonie dojrzewającym w normalnych warunkach tworzenie ettringitu rozpoczyna się już w pierwszych minutach hydratacji i proces ten trwa około 24 godziny. Ettringit C₆A₃S₃H₃₂ tworzy na ogół kryształy o pokroju heksagonalnym. Zgodnie z modelem przedstawionym przez Taylora [5], kryształ powstaje w formie kolumny o składzie \(\{\text{Ca}_3\{\text{Al(OH)}_6\}\cdot12\text{H}_2\text{O}\}\). Oktaedry \(\text{Al(OH)}_6^{3-}\) mają odgórną wspólną krawędź z wielościanami \(\text{CaO}_6\), w ten sposób jony glinu są wiązane z jonami \(\text{Ca}^{2+}\), za pomocą wspólnych jonów \(\text{OH}^-\). W lukach pomiędzy kolumnami rozmieszczone są tetraedry \(\text{SO}_4^{2-}\) i pozostałe cząsteczki wody (rys. 8.2). Część cząsteczek wody związana jest słabą w strukturze ettringitu, może łatwo ulegać odszczepieniu podczas spadku wilgotności czy zwiększenia temperatury, co wyjaśnia różną zawartość wody w tej fazie.

Badania mikrostruktury stwardniałego betonu (ESEM) wykazują, że ettringit występuje w betonie w różnych formach, często jako kuliste skupienia złożone ze spiżonych lub równoległych igiel o różnych rozmiarach (rys. 8.3 i 8.4). Pokrój kryształów ettringitu krystalizującego w wolnej przestrzeni, na przykład w porach, jest wlokniasty. Przyczyną występowania ettringitu w wielu różnych postaciach nie została dotychczas w pełni wyjaśniona. Zaobserwowano, że na tworzenie różnych form ettringitu mają wpływ takie czynniki, jak warunki ciepło-wilgotnościowe, skład, stężenie i pH roztworów w porach betonu [7, 8], jak również warunki powstawania, roztwory stałe z jonami domieszkowymi itp. Stosunek długości do
grubości syntetycznych kryształów ettringitu wyraźnie zależy od pH w roztworze, w którym przebiega reakcja [9]. Długie włóknina powstają przy pH między 10 a 12, a mikrokrystaliczny ettringit występuje przy pH przekraczającym 13,0.

**Rys. 8.2. Model struktury ettringitu według Neubauera [6]**

**Rys. 8.3. Wysmukłe kryształy ettringitu o grubości w zakresie od 0,02 do 0,20 μm, ułożone poziomo, blisko siebie i tworzące grube, igielkowate formy [6]**
8. Czynniki wpływające na trwałość ettringitu

Mehta [8] opisał dwie odmiany ettringitu, które różniły się pokrojem i rozmiarami. Do odmiany typu I zaliczył kryształy ettringitu tworzące długie listewki, o długości od 10 do 100 µm i różnej grubości, krystalizujące z roztworu o mniejszym stężeniu jonów hydroksylowych (rys. 8.5). Uważa on, że ettringit typu I nie jest ekspansywny, a stwardniały zaczyn cementowy zawierający znaczna ilość dużych kryształów ettringitu, charakteryzuje się dużą wytrzymałością i nie wykazuje ekspansji. Kryształy podobne do pręcików o długości od 1 do 2 µm i grubości od 0,1 do 0,2 µm czy mniejszej, tworzące się przy wysokim stężeniu jonów wodorotlenowych podczas hydratacji cementu, zostały określone przez Mehtę jako ettringit typu II. Ten typ mikrokrystalicznego ettringitu może powodować ekspansję w wyniku absorpcji wody.

Rys. 8.4. Wysmukłe kryształy ettringitu tworzące igły o przekroju heksagonalnym i grubości około 2 µm [6]

Rys. 8.5. Wpływ pH na zmianę pokroju kryształów ettringitu (stosunek długości do grubości) [9]
Porównując opublikowane dane dotyczące zakresu trwałości ettringitu [7, 9, 10] i składu roztworu w porach stwardniałego zaczynu cementowego [11, 12] w zaprawie czy betonie, można potwierdzić znaczenie środowiska w kształtowaniu pokroju i trwałości tej fazy (rys. 8.6).

**Rys. 8.6. Trwałość ettringitu w zależności od \( \text{pH} \) roztworu w porach betonu [6]**

Constantiner i Farrington [19], analizując dane źródłowe dotyczące termodynamicznej trwałości ettringitu, zaobserwowali występowanie znaczących różnic w rozpuszczalności ettringitu w funkcji temperatury (iloczyn rozpuszczalności \( K_{sp} \) w temperaturze otoczenia jest w zakresie od \( 1,1 \cdot 10^{-40} \) do \( 5,0 \cdot 10^{-112} \)). Niemniej jednak wartości \( K_{sp} \) dla innych faz, które występują w układzie \( \text{CaO-Al}_2\text{O}_3\text{-CaSO}_4\text{-H}_2\text{O} \), łącznie z fazą AFm, są znacznie większe niż iloczyn rozpuszczalności ettringitu, co pokazuje, że ettringit jest najbardziej trwałą fazą w tym układzie. Rozpuszczalność ettringitu w roztworze jest wyznaczona przez stężenie i współczynniki aktywności czterech rodzajów jonów podanych w równaniu:

\[
K_{sp} = [\text{Ca}^{2+}]^{6}[\text{Al}^{3+}(\text{OH})_4]^{-2}[\text{SO}_4^{2-}]^{3}[\text{OH}^-]^4
\]  

**8.2**

Ettringit, według danych literaturowych, jest trwały w szerokim zakresie temperatury. Mehta [20], badając zależność trwałości ettringitu od temperatury stwier-
dziel, że ettringit jest trwały do temperatury 65°C i częściowo rozkłada się w temperaturze 93°C po 1 godzinie w powietrzu o malej wilgotności. W wilgotnym, nasyconym parą wodną powietrzu obserwował częściową przemianę ettringitu w monosiaczarn w 149°C i w uwodniony glinian wpłynowy w temperaturze 232°C, chociaż udział ettringitu pozostawał niezmieniony po 1 godzinie przechowywania w tej temperaturze. To jest zgodne z obserwacjami Satavy i Veprka [21], którzy badaли przemiany fazy ettringitu metodą analizy termicznej w warunkach hydrotermalnych, przy stałym wzroście temperatury wynoszącym 10°C/min. Opisany rozkład ettringitu w nasyconej parze wodnej występuje w temperaturze 111°C, z utworzeniem monosiaczaru (C₃S.H₀.₅). Z monosiaczaru w temperaturze 190°C powstawał uwodniony glinian wpłynowy i anhydryt (C₃S), a tworzenie się w temperaturze 280°C uwodnionego gliniwu wpłynowego i wodorotlenku wapnia powodowało oddawanie jonów siarczanowych do roztworu. Ogawa i Roy [22] opisują rozkład ettringitu w czystej wodzie w temperaturze od 130 oC do 150°C w zakresie ciśnienia od 100 do 600 psi i tworzenie się monosiaczaru, jak również wodorotlenku wapnia. Badania wykazały, że czysty ettringit może występować w wilgotnych warunkach w temperaturach znacznie wyższych niż 100°C.

Ghorab i współautorzy [23] stwierdzili natomiast, że monosiaczarn jest najbardziej trwałą fazą w temperaturze 80°C, w następujących trzech układach: C₃A-CaSO₄·CaO·H₂O; C₃A-CaSO₄·CaCO₃ - CaO·H₂O i C₃A-CaSO₄·C₃S - CaO·H₂O, podczas gdy ettringit i karboglinian (C₄A·H₁₁) występują w tych układach jako fazy dominujące w temperaturze 5°C i 20°C. Ghorab i Kishar [24] stwierdzili, że ettringit jest trwały przez okres 14 dni w czystej wodzie w temperaturze 60°C i niższej, natomiast w gotującej wodzie szybko przechodzi w monosiaczarn (już po 1 godzinie), a później rozkłada się tworząc gips. Ghorab [25] stwierdził, że monosiaczarn częściowo rozłożył się tworząc ettringit w momencie kontaktu z wodą o temperaturze ocieplenia, jednak bez przyłączania jonów siarczanowych do roztworu.

Na podstawie trwałości uwodnionych siarczanoglinianów wapnia wpływa jednak nie tylko temperatura, lecz również pH roztworu, w którym one występują. Gabrišowa [7], badając przemiany faz uwodnionych gliniów wapnia w temperaturze 20°C jako funkcję pH, obserwowała występowanie ettringitu wspólnie z monosiaczarem przy pH wyższym lub równym 11,6. Przy zmniejszeniu pH do 10,7, monosiaczarn zniósł, a pojawiał się uwodniony glinian wpłyn. Ettringit przy pH równym 10 i mniejszym nie był już trwały i rozkładał się tworząc uwodniony glinian wpłynia i gips. Ghorab i Kishar [26], badający trwałość ettringitu i monosiaczaru w roztworze o różnym stężeniu NaOH, zaobserwowali częstotliwością lub całkowitą przemianę ettringitu w monosiaczarn w zależności od temperatury i stężenia wodorotlenku sodu w roztworze. Im stężenie roztworu wodorotlenku sodu było niższe, tym przemiana ettringitu w monosiaczarn zachodziła w wyższej temperaturze.
Następnie ze zwiększeniem pH, temperatury i czasu reakcji monosiarczan w obecności dwutlenku węgla przechodził w karboglinian. Stwierdzono również, że monosiarczan częściowo przekształca się ponownie w ettringit w czystej wodzie w temperaturze 30°C, z powodu niskiego pH roztworu.

Damidot i Glasser [27, 3], analizując równowagi fazowe w układzie CaO-Al₂O₃-CaSO₄-H₂O w temperaturach 25°C, 50°C i 80°C w oparciu o obliczenia termodynamiczne, wykazali, że podczas zwiększenia temperatury od 25 do 85°C, zakres pH, przy którym ettringit jest trwał, zawęża się, natomiast trwałość monosiarczanu zwiększa się w miarę wzrostu temperatury. Zwiększenie temperatury rozszerza także zakres stężenia jonów siarczanowych, powyżej którego uwodniony glinian wapniowy i monosiarczan są trwałe i kryształizują kosztem ettringitu. Damidot i Glasser [3], badając przemiany fazowe w układzie CaO-Al₂O₃-CaSO₄-H₂O w normalnej temperaturze, wykazali, że zwiększenie pH przez dodatek wodorotlenku sodu, w zakresie od 12,5 do 13,23, zwiększa trwałość ettringitu, a stosunkowo pH odpowiadające roztworowi w zaczynie cementowym. Przedstawione wyniki badań wykazują, że ettringit jest trwałą fazą w układzie CaO-Al₂O₃-CaSO₄-H₂O w temperaturze otoczenia, natomiast monosiarczan jest metastabilny w temperaturze 25°C i przechodzi w uwodniony glinian wapniowy lub ettringit. Jednak ze zwiększaniem temperatury, zwiększa się rozpuszczalność ettringitu, a zmniejsza monosiarczan, co sprzyja przemianie ettringitu w monosiarczan.

W układzie CaO-Al₂O₃-CaSO₄-H₂O ettringit jest trwałą fazą co najmniej w temperaturze 100°C, a rozkłada się w temperaturach większych od około 130°C. Jednakże klęski wzbogacimy w wodorotlenki sodu i potasu trwałość ettringitu ulega zmianie. Już w temperaturze 75°C, przy stężeniu 400 mmol/litr NaOH, ettringit ulega rozkładowi, a pozostaje faza C₄AH₁₃. Przy większym stężeniu NaOH równym 1 mmol/litr gliniany wapnia występują w formie bezpostaciowej, a jony siarczanowe pozostają w fazie ciekłej. W temperaturze około 100°C, przy stężeniu 400 mmol/litr NaOH występuje faza monosiarczanu, a przy większym stężeniu (1 mmol/litr) faza C₃AH₆ [28].

W wytwarzanych obecnie cementach portlandzkich zawartość potasu jest zwykle bliska 1%, co razem z niewielką ilością sodu daje ogólny równoważnik Na₂O ≈ 1%. Przy takiej zawartości alkaliów stężenie potasu w fazie ciekłej zaczynu bezpośrednio po obróbce termicznej wynosi około 1 mmol/litr. Natomiast w cementach o bardzo małej zawartości alkaliów (Na₂O ≈ 0,4%) stężenie tych składników, w przeliczeniu na tlenki, wynosi Na₂O ≈ 200 mmol/litr, a K₂O ≈ 300 mmol/litr [29]. Porównując te wielkości z wynikami badań Wiekera [30] możemy stwierdzić, że ettringit nie będzie trwał przy obróbce cieplnej już w temperaturze około 70°C. Zmiany składu fazowego zaczynu cementowego w procesie obróbki termicznej wpływają na zawartość jonów siarczanowych w fazie ciekłej zaczynu. Stężenie
8. Czynniki wpływające na trwałość ettringitu

jonów siarczanowych utrzymuje się na wysokim poziomie do kilkunastu godzin po zakończeniu obróbki w temperaturze 90°C i spada do około 200 mmol/litr po okresie 28 dni.

Te wyniki doświadczalne zostały potwierdzone w obliczeniach teoretycznych przeprowadzonych przez Glassera i innych [31]. Stwierdzili oni, że w temperaturze 85°C ettringit jest trwałą fazą tylko przy dużym stężeniu jonów siarczanowych w fazie ciekłej. Zwiększenie zawartości alkaliów w cementie powoduje konieczność dalszego zwiększenia stężenia siarczanów w roztworze wymaganego dla zapewnienia trwałości ettringitu.

Glasser [32] wykazał także, że w przypadku dużego stężenia alkaliów termiczna trwałość ettringitu znacznie się zmniejsza. Temperatura bliska 70°C jest podawana jako temperatura graniczna przemiany ettringitu w monosiarczan. Potwierdzają to wyniki badań metodą analizy rentgenowskiej i rezonansu magnetycznego, wykazały obecność słabo krystalicznych faz AFm zbliżonych do monosiarczanu i małą ilość uwodnionych glinianów wapnia, natomiast nie wykryły ettringitu. Trwałość ettringitu w zaczynie cementowym w temperaturze powyżej 70°C, zależy od sumarycznej ilości siarczanów i przy ich dużej zawartości może on występować nawet w temperaturze 90°C [33]. Ogólnie uważa się, że temperatura bliska 70°C jest temperaturą przemiany, w której w zaczynie cementowym zachodzi odwracalna przemiana ettringitu w monosiarczan.

8.2. Rola fazy C-S-H

Podczas dojrzewania betonu w podwyższonej temperaturze faza C-S-H adsorbuje jony siarczanowe, a następnie podczas chłodzenia betonu i dalszego dojrzewania w temperaturze otoczenia w warunkach wilgotnych może je uwalniać [34]. Przebieg tego procesu zależy od składu roztworu w porach, który wpływa na trwałość fazy siarczanoglinianu wapnia, w tym na uwalnianie jonów siarczanowych i powstawanie ettringitu. Odler [35], badając zarówno metodą analizy rentgenowskiej, jak i termicznej, hydratację mieszaniny C3S i gipsu po 28 dniach nie obserwował występowań gipsu. Stwierdzona przez niego największa zawartość jonów siarczanowych w fazie C-S-H wynosiła 1/6 mola. Po dodaniu do zaczynu C3A powstawał ettringit. Stanowi to dowód, że faza C-S-H może oddawać zaabsorbowane jony siarczanowe do roztworu. Względnie szybka reakcja między jonami siarczanowymi a C3A świadczy o fizycznej adsorpcji jonu siarczanowego na powierzchni C-S-H.

Podobnie Fu i inni [36], badając reakcję gipsu w mieszaninie z C-S-H i CH w różnych temperaturach i hydratację z dodanym później C3A, wykazali, że stopień adsorpcji siarczanu przez fazę C-S-H zwiększa się ze wzrostem temperatury, a jego desorpcja (oceniana na podstawie powstawania ettringitu i C4AH13) zmniej-
sza się wraz ze wzrostem temperatury, w której zachodził jągo adsorpcja. W późniejszych doświadczeniach Fu i Beaudoin [37] stwierdzili, że graniczna temperatura powyżej której adsorpcja jonów siarczanowych ulega przyspieszeniu, wynosi 65°C. Natomiast Divet i Randriambololona [38] wykazali, że adsorpcję jonów siarczanowych na powierzchni C-S-H dobrze opisuje izoterna Langmuira, co wskazuje na adsorpcję monomolekularną, która jest odwracalna i wzrasta wraz ze zwiększeniem pH, temperatury i siły jonowej roztworu (rys. 8.7).

Rys. 8.7. Adsorpcja jonów siarczanowych w fazie C-S-H [38]: a) wpływ stężenia NaCl na izotermę adsorpcji w 0,2M NaOH; b) wpływ stężenia NaOH na izotermę adsorpcji; c) wpływ temperatury na izotermę adsorpcji w 0,1 M roztworze NaOH; d) izoterna adsorpcji i desorpcji jonów SO₄²⁻ z fazy C-S-H w 0,05 M NaOH, w temperaturze 25°C

Barbarulo i inni [39] podają, że sorpcja jonów siarczanowych w rzeczywistości zależy w większym stopniu od współczynnika Ca/Si w fazie C-S-H niż od temperatury. Wzrost temperatury prowadzi do zwiększenia współczynnika Ca/Si w fazie C-S-H, który wynosi 1,5 w temperaturze 20°C i 1,58 w temperaturze 85°C. Rów-
nowogowe stężenie jonów siarczanowych w temperaturze 20°C wynosiło około 0,4 mmol/dm³ i 5 mmol/dm³ w temperaturze 85°C. Odler i inni [40] podają, że faza AFm całkowicie rozkłada się po 3 dniach hydratacji cementu w temperaturze 95°C z powodu włączania jonów glinu i żelaza w strukturę fazy C-S-H. Także Copeland i inni [41] wykazali, że jony glinu i żelaza mogą zastępować krzem w strukturze C-S-H.

Stade i Muller [42], badając koordynację glinu w strukturze C-S-H (metodą rezonancji magnetycznego ²⁷Al MAS-NMR), wykazali, że większość jonów glinu zastępuje w strukturze C-S-H wapń, natomiast pozostałe jony glinu podstawiają jony krzemu w tetraedrach krzemianowych. Struktura C-S-H zawiera warstwy CaO₆ i łańcuchy czworosianów krzemianowych (rys. 8.8). Położenie glinu jednak zależy od składu C-S-H, ze zwiększeniem stosunku Ca/Si, więcej glinu występuje pomiędzy warstwami. Taylor [5] uznał, że z powodu dużej różnicy promieni jonów wapnia i glinu, takie lokowanie się Al³⁺ jest bardziej prawdopodobne i może powodować powstawanie AFm.

Rys. 8.8. Schemat struktury C-S-H (a) [168] i schemat przedstawiający łańcuch tetraedrów w tobermorycie, w którym Al³⁺ zastępuje Si⁴⁺ (b) [43]. łańcuchy czworosianów krzemianowych są połączone z warstwami CaO₆. Cząsteczki wody są położone pomiędzy warstwami
W tej hipotezie faza C-S-H może tworzyć nanomieszaninę z warstwami AFm, w których występują jony glinu, żelaza i siarczanowe. Richardson i Groves [43], stosując mikroskopię elektronową, stwierdzili współwystępowanie tych faz, a nawet fazy AFT. Wang i Tong [44] uważają, że jest duże powinowactwo pomiędzy ettringitem a fazą C-S-H. Mierząc potencjały zeta ettringitu i tobermorytu stwierdzili, że cząsteczki tych dwóch faz miały przeciwny ładunek. Tobermorytopodobne koloidalne cząstki fazy C-S-H, wykazujące ujemny ładunek, mogą silnie przeciągać cząstki ettringitu o powierzchniowym ładunku dodatnim. Analizując zmiany składu fazy C-S-H Lewis [45] wykazał, że uwalnianie jonów siarczanowych z fazy C-S-H dojrzewającej w podwyższonej temperaturze zachodzi po ochłodzeniu do normalnej temperatury.

Zmniejszenie rozpuszczalności ettringitu ze spadkiem temperatury prowadzi do jego powstawania z wiązaniem jonów siarczanowych i glinianych z roztworu w porach. Powstaje różnica stężeń pomiędzy roztworem w porach a wewnętrzną fazą C-S-H, co ułatwia proces uwalniania jonów przez ten składnik i powstawanie ettringitu. Famy [34] uważa, że powstawanie ettringitu zachodzi w wyniku uwalniania jonów siarczanowych przez zewnętrzną fazę C-S-H. Famy i inni [46], głównie w wyniku obserwacji pod elektronowym mikroskopem, stwierdzili występowanie dwóch rodzajów fazy C-S-H: „jaśniejszej” wewnętrznej i powstającej w podwyższonej temperaturze dojrzewania i „jasniejszej” zewnętrznej otaczającej niezhydratyzowane ziarno alitu. Podczas dalszego dojrzewania w wodzie w temperaturze 20°C, ziemna alitu, ulegając hydratacji, tworzą bardziej zwarte, wewnętrzną fazę C-S-H.

Rys. 8.9. Związki pomiędzy S/Ca a Al/Ca w „jasniejszej” i „ciemniejszej” faze C-S-H w zaprawie naparzonej w temperaturze 90°C, a potem dojrzewającej 100 dni w wodzie lub w roztworze KOH. P odpowiada stężeniu KOH w roztworze w porach zaprawy bezpośrednio po dojrzewaniu w podwyższonej temperaturze [34]
Na rysunku 8.9 pokazano zmiany składu „jaśniejszych” i „ciemniejszych” obszarów fazy C-S-H podczas dalszego dojrzewania w wodzie i roztworze KOH o takim stężeniu alkaliów jak w roztworze w porach. Wyniki te potwierdzają dużą zawartość jonów siarczanowych i glinianowych w produkcie wewnętrznym C-S-H, bezpośrednio po naparzaniu w temperaturze 90°C. Po 100 dniach dojrzewania w wodzie zmniejsza się stosunek Al/Ca, co wskazuje, że jony glinianowe są uwalniane przez fazę C-S-H. Jony siarczanowe także przechodzą do roztworu, co powoduje zmniejszenie stosunku S/Ca. Równocześnie stwierdzono, że przechodzenie jonów siarczanowych do roztworu jest mniej intensywne podczas dojrzewania w roztworach bogatych w alkalia, w których wymywanie alkaliów ograniczono.

Zmniejszona zawartość jonów siarczanowych w roztworze, koniecznych do tworzenia wtórnego ettringitu, powoduje zmniejszoną ekspansję zapraw dojrzewających w roztworze bogatym w alkalia. Zewnętrzna „jaśniejsza” i „ciemniejsza” wewnętrzna faza C-S-H mogą spełniać rolę źródła jonów siarczanowych w procesie opóźnionego tworzenia ettringitu.

Podczas badań fazy C-S-H w zaczynie cementowym metodą mikroanalizy rentgenowskiej Scrivener i Taylor [47] stwierdzili, że faza C-S-H zawiera sporę sporo jonów glinianowych i siarczanowych, jak również małą ilość monosiarczanu i uwodnionego glinianu wapnia (w formie nanomieszkanin) pochodzących z rozkładu ettringitu podczas obróbki termicznej. Występowanie ekspansji związanej z tworzeniem opóźnionego ettringitu podczas dalszego dojrzewania zaczynu w wodzie przypisywali powtórnej tworzeniu bardzo małych kryształów ettringitu luźno rozmieszczonych w fazie C-S-H. Taylor [48] przedstawił pierwotny model ekspansji związanego z powstawaniem opóźnionego ettringitu (rys. 8.10). Hipoteza Taylora zakłada, że powstawanie mikrokryształów ettringitu w żelu C-S-H powoduje ekspansję zaczynu cementowego, prowadząc do powstawania pustek wokół ziaren kruszywa i mikrorys w zaczynie cementowym. W tej hipotezie masowy ettringit w porach i rysach jest wynikiem rekryrstalizacji tej fazy i jest to ettringit wtórny.

Lewis i współautorzy [49, 50] rozszerzyli model Taylora i zaproponowali hipotezę ekspansji opartą o skład chemiczny fazy C-S-H. Dojrzewanie w podwyższonej temperaturze powoduje rozkład pierwotnego ettringitu utworzonego podczas dojrzewania wstępnego w temperaturze otoczenia i zapobiega dalszemu jego tworzeniu. Faza C-S-H w tym czasie łatwo absorbuje jony siarczanowe w temperaturze otoczenia, które pozostają w kontakcie z roztworem o stężeniu znacznie mniejszym od nasycenia. Powoduje to powstanie różnicy stężeń pomiędzy SO$_4^{2-}$ zaadsorbowanymi przez fazę C-S-H a roztworem w porach, czego wynikiem jest desorpcja jonów siarczanowych przez uwodniony krzemian wapnia i przechodzenie ich do roztworu. Przereagowanie uwalnianych przez fazę C-S-H zaadsorbowanych jonów glinianowych i wapniowych z jonomi siarczanowymi prowadzi do
powstania w zaczynie opóźnionego ettringitu. W tym procesie woda może pochodzić ze źródła zewnętrznego. Zwiększenie objętości związanej z krystalizacją ettringitu powoduje ekspansję zaczynu. Ettringit ulega także rekrystalizacji tworząc względnie duże kryształy w wolnych przestrzeniach, takich jak pustki w strefach przejściowych kruszywo-zaczyn czy mikropęknięcia utworzone w wyniku jego ekspansji. Na skutek ciągłego, opóźnionego powstawania ettringitu i wymywania alkaliów z zaczynu do cieczy otaczającej zaprawę, w roztworze w porach utrzymuje się małe stężenie jonów siarczanowych. W związku z tymi procesami obserwuje się spadek stężenia SO$_4^{2-}$ i desorpcja jonów siarczanowych trwa dopóki równowaga nie zostaje osiągnięta. Ekspansja ustaje po spadku stężenia jonów siarczanowych poniżej iloczynu rozpuszczalności ettringitu, co z kolei może spowodować rozpoczęcie krystalizacji monosiarczanu i utworzenie nanometrycznej mieszaniny z fazą C-S-H.

Glasser i inni [31, 32] przeprowadzili analizę termodynamiczną zaczynu cementowego w różnych temperaturach. W klasycznym zaczynie cementowym, przewidywane stężenie jonów siarczanowych w fazie ciekłej może znacznie wzrastać z 2 mmol/dm$^3$ w temperaturze 25°C do 200 mmol/dm$^3$ w temperaturze 85°C [32]. W dodatku zwiększenie zawartości alkaliów w klinkerze może równocześnie zwiększać stężenie jonów siarczanowych w roztworze. Natomiast stężenie jonów glinianowych jest przeważnie bardzo niskie w porównaniu do stężenia jonów siarczanowych, a współczynnik SO$_4^{2-}$/Al$^{3+}$ jest zwykle większy niż 100. Możliwość bezpośredniego stracania ettringitu z roztworu jest więc uzależniona od zawartości glinianów wapieniowych. Stąd obecność fazy AFm, będącej bogatym źródłem jonów wapnia i glinu jest konieczna dla zarodkowania i wzrostu opóźnionego ettringitu.

**Rys. 8.10. Schematyczny obraz ekspansji zaprawy spowodowanej opóźnionym powstawaniem ettringitu [48]**
natomiast jony siarczanowe są na ogół zawarte w fazie ciekłej. Autorzy cytowanej pracy uważają, że ettringit powstający z małych krystalików AFm otoczonych zwartej fazą C-S-H powoduje powstawanie ciśnienia ekspansji.

W opracowaniu o obserwacjach mikrostruktury zaczynu cementowego Famy i współautorzy [34, 46] podają nieco inny model ekspansji (rys. 8.11). Siarczany i glin występujące w jaśniejszym, wewnętrznym żelu C-S-H bezpośrednio po naparzaniu, nie odpowiadają składowi ettringitu, gdyż są w rzeczywistości zaadsorbowanymi jonami siarczanowymi oraz jonami glinu podstępującymi krzem w fazie C-S-H. Zewnętrzny żel C-S-H utworzony w objętości zajmowanej początkowo przez wodę w wyniku hydrolizy krzemianów i wytrząsania produktów hydratacji, po obróbce termicznej, stanowi nanometryczną mieszaninę z fazą monosiarczanu. Pozostała ilość siarczanów ulega adsorpcji na „wewnętrznym” żelu C-S-H, a jedynie około 7% siarczanów znajduje się w fazie ciekłej, w porach zaprawy. W trakcie przechowywania w wodzie zaprawy po obróbce termicznej zaadsorbowane jony siarczanowe ulegając uwolnieniu przez fazę C-S-H, mogą reagować z monosiarczanem tworząc ettringit. Podczas powstawania ettringitu kosztem monosiarczanu, w ograniczonej przestrzeni małych porów zewnętrznzej fazy C-S-H wytwarzana się ciśnienie powodujące ekspansję. Powstają bowiem submikroskopowe krystaliki ettringitu, a pęcznienie zaczynu wywołane ich powstawaniem powoduje tworzenie wokół zarię kruszywa luku, w których później rekryształizują otoczki masywnego ettringitu.

![Schemat proponowanego mechanizmu ekspansji dojrzewających w podwyższonej temperaturze zapraw, gdzie AFm oznacza monosiarczan [34]: a) bezpośrednio po naparzaniu; b) ekspansywna zaprawa po 200 dniach dojrzewaniu w wodzie, c) nieekspansywna zaprawa po 200 dniach dojrzewania w wodzie](image-url)
Podsumowując powyższe rozważania Famy [51] stwierdziła, że warunkami opóźnionego powstawania ettringitu powodującego ekspansję zacynku cementowego jest dojrzewanie w podwyższonej temperaturze, przechowywanie w warunkach wilgotnych, tworzenie submikrometrycznych kryształów ettringitu w zacynnie wewnętrznej fazie C-S-H w wyniku reakcji cząstek monosiarczanu z jonami siarczanowymi, zaadsorbowanymi przez wewnętrzną fazę C-S-H.

Literatura

8. Czynniki wpływające na trwałość ettringitu


8. Czynniki wpływające na trwałość ettringitu


Czynniki wpływające na wewnętrzną korozję siarczanową betonu

W przypadku budowli betonowych narażonych na uszkodzenia spowodowane opóźnionym powstawaniem ettringitu duże znaczenie praktyczne ma poznanie czynników wpływających na ekspansję betonu oraz określenie zakresu ich oddziaływania. Do tych czynników należy zaliczyć skład i właściwości cementu oraz warunki dojrzewania betonu.

9.1. Skład cementu i jego właściwości

Siarczany występujące w klinkierze mogą być wewnętrznym źródłem jonów siarczanowych [1]. Jony te mogą być uwalniane podczas hydratacji składników klinkieru, powodując powstawanie ettringitu w stwardniałym betonie, bez dodatkowego, zewnętrznego źródła siarczanów. W klinkierach przemysłowych tylko mała ilość siarczanów, mniejsza niż 0,5%, znajduje się w fazach klinkierowych i jest uwalniana w procesie hydratacji.

Siarka w procesie klinkierzacji wykazuje największe powinowactwo do alkaliów i przy stosunku molowym (K₂O + Na₂O)/SO₃ < 1 tworzą się siarczany sodu i potasu. Na rozmieszczanie siarczanów w składnikach klinkieru cementowego, w znacznym stopniu, wpływa stosunek molowy SO₃ do K₂O i Na₂O. Gdy stosunek ten jest mniejszy od 1, K₂O ma większe powinowactwo do SO₃ niż Na₂O, o czym świadczy prawie dwukrotnie większa ilość K₂O przechodząca do wody niż odpowiednia ilość Na₂O. Dla stosunku molowego SO₃ do (K₂O + Na₂O) mniejszego od 0,5, ilość rozpuszczalnego w wodzie SO₃ i rozpuszczalnych w wodzie K₂O + Na₂O są w przybliżeniu równe, co pokazuje, że SO₃ zawarty jest w siarczanach sodu i potasu. Dla stosunku molowego (K₂O + Na₂O)/SO₃ pomiędzy 0,5 i 1,0 niemal cała zawartość SO₃ jest zazwyczaj rozpuszczalna w wodzie, ale zawartość rozpuszczalnego w wodzie K₂O + Na₂O jest mniejsza molowo od rozpuszczalnego w wodzie SO₃, co wskazuje na obecność C₂K₂S₃. Udziały K₂O i Na₂O w fazie ciekłej zbliżają się odpowiednio do 1,0 i 0,5 przy stosunkach molowych siarczanu do alkaliów.
9. Czynniki wpływające na wewnętrznona korozję siarczanową betonu

łowi bliskich 1,5. Dla większości klinkierów główną fazę siarczanową będzie afititalit o stosunku K:Na = 3,0, a także niewielka zawartość siarczanu potasu lub C₂K₂S₃, lub obu tych faz. W tablicy 9.1 zestawiono znane fazy klinkieru cementowego zawierające siarczany, ze wskazaniem stopnia ich przereagowania z wodą.

**Tablica 9.1. Fazy klinkieru cementu portlandzkiego, w których występują siarczany [3]**

<table>
<thead>
<tr>
<th>Fazy</th>
<th>Stopień przereagowania z wodą</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂SO₄ (arkanit)</td>
<td>bardzo duży</td>
</tr>
<tr>
<td>3 K₂SO₄ · Na₂SO₄ (afitalit)</td>
<td>bardzo duży</td>
</tr>
<tr>
<td>Na₂SO₄ (thenardyt)</td>
<td>bardzo duży</td>
</tr>
<tr>
<td>K₂SO₄ · 2 CaSO₄ (langbeinit wapniowy)</td>
<td>bardzo duży</td>
</tr>
<tr>
<td>CaSO₄ (anhydryt)</td>
<td>podobnie jak anhydrytu dodanego podczas mielenia cementu</td>
</tr>
<tr>
<td>roztwór stały w głównych fazach klinkierowych</td>
<td>taki sam, jak fazy macierzystej</td>
</tr>
</tbody>
</table>

Klinkiery cementowe w Europie Centralnej prawie zawsze zawierają więcej potasu i sodu niż SO₃, dlatego SO₃ wiązany jest głównie w postaci siarczanów sodu i potasu. K₂SO₄ stanowi często odrębną fazę tworzącą wytrącenia na kryształach alitu i innych fazach klinkierowych. Potwierdzają to obserwacje klinkieru pod elektronowym mikroskopem skaningowym (rys. 9.1). Siarczany sodu i potasu osadzają się na powierzchni faz klinkierowych, prawdopodobnie w wyniku kondensacji z fazy gazowej, w piecu obrotowym [2]. Siarczany te rozpuszczają się szybko w wodzie.

**Rys. 9.1. Siarczan potasu pokrywający fazy klinkierowe [3]**
Po utworzeniu siarczanów sodu i potasu pozostała siarka występuje w formie anhydrytu lub wbudowuje się do struktury alitu, belitu oraz żelazianów, tworząc roztwory stale. Siarka występująca w żelazianach, ze względu na zbyt małe ich zawartości, jest pomijana w rozważaniach. Na rysunku 9.2 przedstawiono zależność zawartości SO$_3$ (w % masy) w alicie i belicie od zawartości SO$_3$ w klinkierze [4, 5] (* w chemii cementu podaje się zawartości składników w postaci tlenkowej). Analizowane klinkiery zawierające mniej niż 2% SO$_3$ były klinkierami przemysłowymi, a klinkiery z większą zawartością SO$_3$ klinkierami laboratoryjnymi. Zawartość SO$_3$ większa od 3% rzadko występuje w klinkierach przemysłowych. W klinkierach o zawartości SO$_3$ większej od 3% jej ilość w alicie jest mniejsza od 0,5%, a w belicie rzadko przekracza 2%.

Rys. 9.2. Zależność zawartości SO$_3$ w % masowych w alicie i belicie od zawartości SO$_3$ w klinkierze [3] (alit △, belit □).

Rys. 9.3. Zawartość SO$_3$ w alicie w zależności od zawartości siarczanów w belicie w tych samych klinkierach [3].
Na zawartość SO₃ w fazach krzemianowych prawdopodobnie wpływa nie tylko całkowita zawartość siarki w klinkierzze. Przedstawiony na rysunku 9.3 przebieg zmian zawartości SO₃ w alicie w funkcji jej zawartości w belicie w tych samych klinkierzach, wskazuje, że zawartość SO₃ w belicie jest przeważnie cztery-pieć razy większa niż w alicie.

W ostatnich latach zaobserwowano [6, 7], że zarysowania w eksploatowanym betonie dojrzewającym w normalnej temperaturze mogą być efektem opóźnionego powstawania ettringitu, a to z kolei może być spowodowane zbyt dużą zawartością SO₃ w cemencie, zbyt dużą zawartością w klinkierzze czy występowaniem w klinkierzze znacznej zawartości faza, z których siarczany powoli przechodzi do fazy ciekłej. Uważa się, że tymi fazami mogą być anhydryt i krzemiany wapniowe.

Ilość SO₃, która może występować w alicie i belicie jest ograniczona przez zdolność tych faz do tworzenia roztworów stałych. Pewien nadmiar SO₃, większy od zawartego w tych fazach czy w siarczanach sodu i potasu, a langbeinite wapniowego, może występować w anhydrycie. Jony siarczane wchodzące w skład alitu, jak i związane w anhydrycie nie mogą być przyczyną powstawania ettringitu w stwardniałym betonie (nie poddawanym obróbce cieplnej), tak jak wynika z uwagi na względnie dużą szybkość reakcji tych faz z wodą, jak to wykazali Klemm i Miller [8]. Natomiast belit reaguje z wodą w sposób wolny, a występuje w ziarnach belitu wkluzje anhydrytu, jak wykazał Kurdowski [9], mogą być przyczyną opóźnionego uwalniania jonów siarczanowych i destrukcji powstawania ettringitu. Zawartość SO₃ w belicie prawdopodobnie nie przekracza 0,5%. W ciągu 28 dni może przereagować połowa belitu, w tym czasie do fazy ciekłej przejdzie mniej niż 0,3% SO₃. Jest mało prawdopodobne, aby ettringit tworzony z tak małej ilości SO₃ powodował destrukcję betonu.

Oszacowano, że część SO₃, większa niż 1,0%, jest nierozpuszczalna w wodzie lub rozpuszcza się bardzo wolno [10]. Uszkodzenie mikrostruktury betonu nienaparzanego w wyniku opóźnionego tworzenia ettringitu może być więc zmniejszone przez zastosowanie klinkieru zawierającego mniej niż 1% SO₃, a destrukcja spowodowana dużą zawartością siarczanów w klinkierzze może być zminimalizowana lub wyeliminowana przez dojrzewanie betonu w środowisku o małej wilgotności. Brak jest danych dotyczących eksploatowanych betonów wykonanych z cementów otrzymywanych z klinkierów o zwiększonej zawartości siarczanu wapniowego [11].

W strukturze krzemianów siarka i glin zastępuje krzemionkę, ładunek jest równoważony głównie przez podstawienia złożone 2Al^{3+} + S^{6+} → 3Si^{4+} [12]. Można oczekiwać, że stosunek Al/S w klinkierzach belitowych będzie wynosił około 2, co potwierdza mikroanaliza rentgenowska [4, 5]. Podczas hydratacji belitu, Al i siarczany tworzą fazy siarczanoglinianów, przy czym głównie powstaje monosiarczan,
Korozja wewnętrzna betonu

a nie ettringit [7]. Zestawienie wyników badań klinkierów nie potwierdza hipotezy, że w cementach zarówno całkowita zawartość SO$_3$ w klinkierze, jak i występowanie SO$_3$ w fazach klinkieru jest prawdopodobnym źródłem zniszczenia poprzez opóźnione powstawanie ettringitu w betonie, nie dojrzewającym w podwyższonej temperaturze [3].


Szczególnie wiele przypadków opóźnionego powstawania ettringitu, opisanych w literaturze, było związanych z cementami o wysokiej zawartości siarczanów (4-5% SO$_3$). Zwykle cementy te zawierają także dużo SO$_3$ pochodzącego z klinkieru. Kelham [21] stwierdził, że największą ekspansję wykazuje zaprawa z cementu zawierającego 4% siarczanu (rys. 9.4). Jednak ze zwiększeniem zawartości Na$_2$O$_4$ w cementie dopuszczalna zawartość SO$_3$ ze względu na możliwość ekspansji jest większa od 4%.
Podobny wpływ zawartości alkaliów i siarczanów na przebieg ekspansji obserwowali Lewis i współautorzy [22] (rys. 9.5). Natomiast Zhang i współautorzy [15] nie odnotowali w swoich badaniach wpływu granicznej zawartości siarczanów na ekspansję spowodowaną opóźnionym powstawaniem ettringitu.

Lawrance [23, 24] i Taylor [17], badając przez kilka lat ekspansję betonów, zapraw i zaczynów cementowych wykonanych z kilkudziesięciu cementów o zróżnicowanym składzie, wykazali, że dla prognozowania całkowitego stopnia ekspansji
szczególne znaczenie ma całkowita zawartość $SO_3$, CaO, MgO i Na$_2$O, natomiast ze wzrostem zawartości $C_3A$ ekspansja zmniejsza się. Wykazano niewielką zależność ekspansji od zawartości K$_2$O i rozdrobnienia cementów. Cement portlandzki (poza cementem odpornym na siarczany) zawiera bardzo mały stosunek $SO_3$ do $C_3A$, stąd prawdopodobnie zawartość siarczanów decyduje o maksymalnej zawartości ettringitu, która może powstawać i powodować destrukcję betonu. Heinzi i współautory [25] podali, że cementy portlandzkie, w których występuje prawdopodobieństwo opóźnionego powstawania ettringitu zawierają powyżej 3% $SO_3$ i powyżej 1% Na$_2$O, a stosunek $SO_3$/Al$_2$O$_3$ powinien być większy niż 0,45. Badając betony ulegające zniszczeniu z powodu opóźnionego powstawania ettringitu, Divet [26] zauważył, że zastosowany w tych betonach cement zawierał więcej niż 0,6% Na$_2$O, ale zawartość $SO_3$ i $C_3A$ nie była zbyt wysoka. Badając wpływ rozdrobnienia cementu na stopień ekspansji Kelham [21] wykazał, że zwiększenie powierzchni właściwej wpływa na zwiększenie stopnia ekspansji (rys. 9.6).

Rys. 9.6. Wpływ stopnia rozdrobnienia cementu na ekspansję zapraw dojrzewających przez pięć lat po naparzaniu w temperaturze 90°C przez okres 12 godzin [21]. Każda linia łączy dane dotyczące cementów o tym samym składzie fazowym, ale różnym rozdrobnieniu

Natomiast ekspansja maleje, jeśli cement zawiera więcej niż 5% $SO_3$, lecz mało siarczanów pochodzących z klinkieru albo dużo potasu. Lawrence [24] stwierdził, że zwiększenie zawartości $C_3A$ i $C_3S$ powoduje zwiększenie ekspansji i zaproponował wprowadzenie zależności empirycznej pozwalającej na przewidywanie stopnia ekspansji zaprawy dojrzewającej w temperaturze 90°C przez okres 12 godzin w zależności od składu i rozdrobnienia cementu:
Ekspansja (%) = 0,00474·SSA + 0,0768·MgO + 0,217·C₃A + 0,0942·C₃S + 1,27·Na₂Oₑ – 0,737·ABS [SO₃ – 3,7 – 1,02Na₂Oₑ] – 10,1 (9.1)

gdzie SSA to powierzchnia właściwa wyrażona jest w m²/kg, a składniki cementu w procentach wagowych.

Pomimo że McDonald [27] potwierdził przydatność równania (9.1) do oceny podatności cementu na opóźnione powstawanie ettringitu, to racjonalne dopasowanie równania uzyskano tylko dla ograniczonego zakresu danych. W kolejnej pracy Kelham [28] wykazał, że zawartość alkaliów przekraczająca 0,8% obniża krytyczną temperaturę dojrzewania powodującą ekspansję, natomiast przy średniej zawartości alkaliów zwiększenie C₃A lub MgO w cementach obniża tę temperaturę, a w roku 2003 wycofał się ze stosowania wzoru empirycznego. Również Zhang i współautorzy [15] zaproponowali „wskaźnik opóźnionego powstawania ettringitu” przedstawiający zależności ekspansji od składu cementu:

$$\text{DEF}_{\text{wskaźnik}} = (\text{SO}_3/\text{Al}_2\text{O}_3)_m \cdot [(\text{SO}_3 + \text{C}_3\text{A})_w/10] \cdot (\text{Na}_2\text{O}_e)^{1/2} \quad (9.2)$$

gdzie:

(\text{SO}_3/\text{Al}_2\text{O}_3)_m – stosunek molowy SO₃ do Al₂O₃,
(\text{SO}_3 + \text{C}_3\text{A})_w – suma zawartości SO₃ i C₃A (C₃A wyliczone według Boguea),
(\text{Na}_2\text{O}_e)^{1/2} – pierwiastek kwadratowy z zawartości procentowej Na₂Oₑ.

Nie zaobserwowano ekspansji, gdy wartość tego wskaźnika wynosiła około 1,1. W przypadku cementów o wskaźniku większym od tej wartości ekspansja wykazywała w przybliżeniu zależność liniową od różnicy pomiędzy wskaźnikiem rzeczywistym a jego wartością graniczną 1,1. Należy jednak podkreślić, że wartość graniczna wskaźnika zmienia się wraz z warunkami dojrzewania.

Powyższe dane literaturowe pokazują, że ważnymi parametrami wykazującymi dobrą korelację z ekspansją są zawartości SO₃, Na₂Oₑ, MgO, CaO, C₃A, powierzchnia właściwa cementu oraz zawartość C₃S. Współzależność tych czynników prowadzi do sumarycznego ich wpływu na wynik ekspansji. Pomimo wielu prób ustalenia zależności między składem cementu a ekspansją, nie zaproponowano zależności ogólnej słusznej we wszystkich przypadkach. Może to wskazywać na powiązanie ekspansji, spowodowanej opóźnionym powstawaniem ettringitu, nie tylko ze składem chemicznym cementu, ale również z innymi czynnikami, w tym fizycznymi, i z tego względu dokładne prognozowanie wymaga pełniejszych analiz.
9.2. Skład betonu

Właściwości betonu zależą od jego składu, czyli między innymi od zawartości cementu i współczynnika w/c. Badając wpływ współczynnika w/c w zakresie od 0,4 do 0,7 Heinz i Ludwig [14, 25, 13] nie obserwowali wyraźnej zależności pomiędzy w/c a wielkością ekspansji zapraw lub betonów. Zauważyli jednak, że zmniejszenie kapilarnej porowatości przez obniżenie współczynnika w/c może ograniczyć ekspansję, chociaż zmiana rozkładu uzianienia kruszywa drobnego eliminuje ten wpływ. Także Odler [29] zaobserwował zmniejszenie ekspansji zaczyń cementowych zaczyń cementowych wraz ze zmniejszeniem współczynnika w/c – od 0,5 do 0,4. Natomiast Lawrence [24] stwierdził, że zwiększenie stosunku w/c w zaprawach przyspiesza ekspansję początkową, lecz zmniejsza końcową (rys. 9.7).

![Rys. 9.7. Wpływ stosunku w/c na ekspansję zapraw z różnych cementów, dojrzewających w wodzie po naparzaniu w temperaturze 85°C [24]](image)

Zmiana ekspansji początkowej ze zwiększeniem stosunku w/c może być wynikiem różnic w porowatości kapilarnej zaprawy lub betonu. Zwiększenie stosunku w/c zwiększa przepuszczalność zaprawy lub betonu i ułatwia migrację roztworu w porach. Należy zwrócić uwagę, że zmiana stosunku w/c zmienia także zawartość zaczyń w objętości zaprawy. Ponadto w/c wpływa na inne właściwości zaczyń, takie jak szybkość procesu hydratacji i reologię, które mają z kolei wpływ na mikrostrukturę zaprawy i mogą pośrednio zmieniać przebieg ekspansji.

Duża zawartość cementu w betonie powoduje podniesienie temperatury kompozytu podczas hydratacji oraz zwiększenie ilości ettringitu na jednostkę objętości betonu. Można oszacować objętość ettringitu w stwardniałym betonie. Przy zawar-
tości 8% C₃A i 4% SO₃ w cencie oraz 300 kg cementu/m³ betonu maksymalna objętość powstałeego ettringitu może stanowić 3,54% objętości betonu. Ze zwiększeniem ilości cementu zwiększa się objętość powstającego ettringitu w jednym metrze sześciennym betonu. Średnia objętość порów w stwardniałym betonie wynosi od 9 do 15% objętości betonu, stąd w betonie o przeciętnym składzie maksymalna zawartość ettringitu, która może powstawać teoretycznie, jest mniejsza niż całkowita objętość порów. To wskazuje, że decydujące znaczenie dla stopnia zniszczenia betonu może mieć nie całkowita objętość порów, ale raczej rozkład ich wielkości.

9.3. Warunki dojrzewania

Wyniki badań różnych autorów dotyczące wpływu czasu wstępnego dojrzewania zapraw w temperaturze otoczenia na późniejszą ekspansję prowadzą do sprzecznych wniosków. Heinz i Ludwig [14] wykazali, że przedłużone wstępne dojrzewanie od 1 dnia do 1 roku, powodujące wytworzenie bardziej zwartej i sztywnej mikrostruktury zaprawy w porównaniu do zaprawy dojrzewającej tylko jedną lub dwie godziny, zwiększa stopień zniszczenia powstawanego powstawaniem ettringitu. Odler i Chen [29] nie zaobserwowali większego wpływu czasu wstępnego dojrzewania w zakresie od 30 minut do 4 godzin na stopień ekspansji. Przeciwnie stanowisko zajęli Fu i współautorzy [30], którzy podali, że stopień ekspansji znacznie zmniejsza się ze zwiększeniem czasu wstępnego dojrzewania od 1 do 5 godzin. Famy [31] wykazała, że wydłużenie wstępnego dojrzewania do 28 dni eliminuje ekspansję, która nie występuje nawet po długim czasie (rys. 9.8).

![Rys. 9.8. Wpływ czasu wstępnego dojrzewania zapraw przed naparzaniem na ekspansję po naparzaniu w temperaturze 90°C przez okres 12 godzin [31]](image-url)

Stwierdzono występowanie ekspansji związaną z opóźnionym powstawaniem ettringitu w betonach, które nie były poddawane dojrzewaniu w podwyższonej temperaturze, lecz dojrzewały zarówno w warunkach otoczenia, jak i podwyższonej temperaturze, a następnie były eksponowane w zmiennych warunkach. Batic i współautorzy [32] poddali laboratoryjnie wytworzone betony dojrzewające w temperaturze otoczenia różnym procesom: zainicjowali reakcję alkaliów z krzemionką, a następnie poddali materiał cyklicznemu nawilżaniu i suszeniu oraz zamrażaniu i rozmrażaniu. W oparciu o obserwacje morfologii ettringitu metodą mikroskopii skaningowej, stwierdzili, że rekrystalizacja ettringitu po cyklach suszenia i nawilżania jest najbardziej prawdopodobnym mechanizmem odpowiedzialnym za ekspansję obserwowanych betonów. Stark i Bollmann [33], próbując określić rolę powstającego ettringitu w tworzeniu rys w betonach, nie poddawanych dojrzewaniu w podwyższonej temperaturze, wykazali, że powstawanie ettringitu nie jest pierwotnym powodem pękania betonu.

Badając betony po różnych okresach eksploatacji Collepardi [34] wykazał, że występowanie uszkodzeń związanych z opóźnionym powstawaniem ettringitu jest identyczne zarówno wtedy, gdy betony dojrzewają w wysokiej temperaturze czy też nie. Mehta [35] wyraził pogląd, że niezależnie od źródła siarczanów i zastosowanych warunków dojrzewania, w każdym przypadku pękanie związane z powstawaniem ettringitu jest spowodowane opóźnieniem tego procesu. Mielenz i współautorzy [36] przedstawili podobne objawy uszkodzenia betonu bez względu na historię jego dojrzewania i przypuszczając, że prawdopodobnie zawartość siarczanów w tychbetonach przekraczała normową zawartość graniczną i występowały one głównie w fazach klinkierowych. Opóźnione powstawanie ettringitu przypisywali oni małej reaktywności tych faz związanej z niską rozpuszczalnością anhidrytu i siarczanów zawartych w klinkierach.
9. Czynniki wpływające na wewnętrzną korozję siarczanową betonu

Pomimo tych stwierdzeń, kilku badaczy [37-39] wykazało, że anhydryt reaguje względnie szybko, zwykle w ciągu 24 godzin, nie stwierdzając, że klinkier o dużej zawartości SO₃ może powodować ekspansję. Taylor [3] wykazał, że chociaż belit reaguje znacznie wolniej niż anhydryt czy alit, to jest bardzo mało prawdopodobne, aby zawartość ettringitu utworzona z 0,3% siarczanu z belitu po 28 dniach hydratacji cementu mogła spowodować zniszczenie betonu. Analizując warunki, w których ettringit może powstawać w betonie czy w zaczynie cementowym dojrzewającym w normalnej temperaturze Taylor [40] doszedł do wniosku, że nie ma danych obejmujących nowoczesne cementy i klinkiery, potwierdzających możliwość zniszczenia betonu przez opóźnione powstanie ettringitu, bez wcześniejszego rozkładu ettringitu w warunkach dojrzewania, w podwyższonej temperaturze. Na tej podstawie Taylor [41] stwierdził później, że wnioski dotyczące opóźnionego powstawania ettringitu nie są oparte na wynikach badań laboratoryjnych wykonanych w kontrolowanych warunkach i mogą mieć wątpliwą wartość. Collepardi [42] zakwestionował ten pogląd, opierając się na nowych pracach, i stwierdził, że dojrzewanie w wysokiej temperaturze może jednak powodować opóźnione powstawanie ettringitu. Obecnie uznaje się, że brak trwałości ettringitu w wysokiej temperaturze dojrzewania betonu, a następnie opóźnione powstawanie ettringitu podczas dojrzewania w warunkach wilgotnych, w temperaturze otoczenia, są głównymi procesami powodującymi powstawanie rys w betonie.

Temperatura obróbki termicznej uznawana jest jako czynnik mający największy wpływ na zjawisko opóźnienia powstania ettringitu. Famy i współautorzy [43] uważają, że ryzyko wystąpienia ekspansji spowodowanej opóźnionym powstawaniem ettringitu nie można uniknąć przez dobranie specjalnego składu cementu, ale można wyeliminować przez ograniczenie wewnętrznej temperatury betonu. Maksymalna temperatura betonu podczas dojrzewania nie powinna być wyższa od 80°C, a o ile istnieje możliwość opóźnionego powstawania ettringitu, nie powinna przekraczać 70°C. Ekspansja związana z opóźnionym powstawaniem ettringitu jest obserwowana w zacynkach, zaprawach i betonach dojrzewających w temperaturze 65°C i wyższej. Hime [44] uważa, że graniczna temperatura dojrzewania zapobiegająca opóźnionemu powstawaniu ettringitu to 60°C. W temperaturze dojrzewania wyższej od tej granicznej obserwuje się znaczne zwiększenie prawdopodobieństwa opóźnionego powstawania ettringitu oraz zwiększenie stopnia ekspansji. Temperatura graniczna zależy od sumarycznej zawartości Na₂Oᵢ w betonie oraz warunków jego dojrzewania.

Divet i Pavoine [45], badając betony po pewnym czasie eksploatacji, stwierdzili, że opóźnione powstawanie ettringitu występuje także w betonowych konstrukcjach masowych, w których dochodzi do znacznego zwiększenia temperatury w początkowym etapie twardnienia w ciągu kilku godzin, a następnie do jej po-

Wysoka temperatura betonu może także utrzymywać się podczas jego ukladania w podwyższonej temperaturze zewnętrznej (letnia pogoda) lub może być spowodowana zastosowaniem gorącego cementu do sporządzania mieszanki betonowej. Także w wyniku uwalniania ciepła hydratacji temperatura betonu może przekroczyć 70°C, szczególnie w elementach masowych (rys. 9.9). Podobne warunki mogą występować w betonach, które nie były poddawane obróbce cieplnej, ale podczas betonowania temperatura była wyższa od temperatury granicznej zapewniającej trwałość ettringitu i występowały zmienne warunki wilgotnościowe.

*Sahu i Thaulow [49], badając betonowe podkłady kolejowe naparzane w maksymalnej temperaturze nie przekraczającej 60°C, wykazali, że opóźniony ettringit może powstawać w temperaturze dojrzewania niższej niż 70°C, przy zastosowaniu cementu o niekorzystnym składzie. Jednak wydaje się, że bardziej prawdopodobną przyczyną ekspansji był, w tym przypadku, wzrost temperatury wewnętrz elemen-tów betonowych, spowodowany wydzielaniem ciepła hydratacji cementu.*

![Rys. 9.10. Wpływ czasu dojrzewania w temperaturze od 95°C do 100°C na ekspansję zapraw [23]](image)


Heinz i Ludwig [13, 14] podają, że dojrzewanie w wodzie lub w wilgotnym, nasyconym parą wodną powietrzu jest warunkiem koniecznym do wystąpienia ekspansji spowodowanej opóźnionym powstawaniem ettringitu. Uwazają oni, że wtórne powstawanie ettringitu, ze względu na duże zapotrzebowanie na wodę, wymaga oddziaływania wody ze środowiska zewnętrznego. Odler i Chen [29] także zaobserwowali, że dojrzewanie pod wodą, bardziej niż w wilgotnym powietrzu, w widoczny sposób przyspiesza powstawanie ettringitu i zwiększa stopień ekspansji. Yan i współautorzy [50] stwierdzili, że ekspansja zwiększała się tak długo, dopóki betony narażone na opóźnione powstawanie ettringitu pozostawały w warunkach wilgotnych.
Famy [43] także stwierdziła, że dojrzewanie w środowisku o wilgotności względnej około 90% prowadzi do zmniejszenia szybkości wzrostu stopnia ekspansji. Uważa też, że nie tylko zmniejszenie dostępu wody, ale również ograniczenie strat alkaliów z zaprawy, powoduje zmniejszenie ekspansji. W celu przedstawienia wpływu wymywania alkaliów na ekspansję, przechowywała zaprawy w stężonych roztworach alkaliów i stwierdziła, że szybkość i stopień ekspansji zmniejsza się wraz ze zwiększeniem stężenia alkaliów w otaczającym zaprawę roztworze (rys. 9.11).

Rys. 9.11. Wpływ stężenia alkaliów w roztworze, w którym dojrzewa zaprawa na ekspansję zaprawy twardniejącej w temperaturze 90°C przez okres 12 godzin [43]; P odpowiada stężeniom alkaliów występującym w roztworze w porach zaczynu cementowego

W zaprawie zanurzonej w stężonym roztworze wodorotlenków sodu i potasu utrzymuje się duża zasadowość fazy ciekłej w porach, co zwiększa rozpuszczalność ettringitu, przeciwdziałając jego powstawaniu. Gdy nie tworzy się ettringit wiążący jony siarczanowe z roztworu w porach, różnica stężenia tych jonów w roztworze w porach i wewnętrznym produkcie C-S-H nie występuje. To ogranicza uwalnianie jonów siarczanowych z wewnętrznego C-S-H i w następstwie zmniejsza szybkość i stopień ekspansji. Jednak należy zaznaczyć, że warunki, takie jak dojrzewanie w dużej ilości wody lub innych roztworach stwarzane są na potrzeby przyspieszonej laboratoryjnej metody badania ekspansji powodowanej opóźnionym powstawaniem ettringitu i nie odpowiadają normalnym warunkom eksploatacji betonu.

Diamond [51] badał betony po dłuższym czasie eksploatacji, w których zaszło opóźnione powstawanie ettringitu i wykazał, że w budowlach betonowych możliwość wymywania alkaliów jest mała ze względu na wymiar przekrojów elementów. Thomas i Ramlochan [52] uważają, że jest to jedna z przyczyn braku znaczących uszkodzeń z powodu opóźnionego powstawania ettringitu, w powszechnie eksploatowanych betonach.
9. Czynniki wpływające na wewnętrzną korozję siarczanową betonu

Rys. 9.12. Schemat przedstawiający trzy grupy czynników wpływających na wewnętrzną korozję siarczanową, zależną od opóźnionego powstawania ettringitu [42]

Collepardi [42] zwrócił uwagę, że przy braku jednego z trzech głównych czynników, tj. późnego uwalniania jonów siarczanowych, oddziaływania środowiska o dużej wilgotności podczas eksploatacji betonu i występowania mikrorys, uszkodzenie betonu spowodowane wewnętrzną korozją siarczanową nie występuje.

9.4. Wpływ rodzaju kruszywa

Wyniki badań wpływu właściwości kruszyw na opóźnione powstawanie ettringitu dotyczą przeze wszystkim zależności tego procesu od stopnia rozdrobnienia kruszywa [30, 54]. Autorzy opracowań dotyczących wpływu rodzaju kruszyw i ich właściwości na ekspansję związaną z opóźnionym powstawaniem ettringitu są zgodni co do tego, że ekspansja beleczek zaprawy z piaskiem kwarcowym zwiększa się wraz z rozdrobnieniem kruszywa [53]. Podobnie Grattan-Bellew i wspóalutorzy [54] zaobserwowali, że ekspansja jest odwrotnie proporcjonalna do wymiaru ziaren kruszywa kwarcowego i wykazali, że zawartość powstającego ettringitu i ekspansja zwiększają się wraz z powierzchnią właściwą kruszywa. Zgodnie z hipotezą powstawania ciśnienia ekspansji w wyniku wzrostu kryształów w strefie przejściowej kruszywo-zaczyn, zwiększenie powierzchni właściwej kruszywa sprzyja tworzeniu ettringitu w tej strefie i związanej z nim ekspansji. Nadal jednak przeważył pogląd, że bardziej prawdopodobną przyczyną ekspansji zaczynu jest opóźnione powstawanie ettringitu, a nie wzrost względnie dużych jego kryształów w strefie kontaktowej zaczynu z kruszywem. Nie znaleziono jednak zależności między ilością tworzonego ettringitu a stopniem ekspansji. Natomiast najprawd-
podobnej wpływ wielkości ziaren kruszywa wynika ze zmiany jego upakowania w betonie. Zastosowanie drobnego kruszywa o dużej powierzchni właściwej pozwala na łatwiejsze przemieszczanie się roztworu w porach zaczynu przez strefę kontaktową z kruszywem, co może sprzyjać opóźnionemu powstawaniu ettringitu. Potwierdzają to obserwacje wskazujące na późniejsze występowanie ekspansji zaczynu cementowego, niż ma to miejsce w przypadku zaprawy i betonu [24, 55].

Badając wpływ rodzaju kruszywa wykazano, że zastosowanie piasków wapiennych zamiast kwarcowych znacznie zmniejsza stopień ekspansji [23, 56]. Także w innych pracach [24, 57] wykazano, że dodatek drobnego kruszywa wapiennego znacząco zmniejsza ekspansję powodowaną opóźnionym powstawaniem ettringitu.

 Wyniki badań ekspansji zapraw cementowych o zwiększonej zawartości siarczanu wapnia z kruszywem wapiennym lub krzemionkowym, poddanych naparzaniu w temperaturze 90°C zamieszczone w pracy [58] wykazały, że do 30 dni dojrzewania zmiany liniowe zapraw były podobne, po tym czasie zaprawa z kruszywem wapiennym (1W) rozszerzała się w niewielkim stopniu, a jej wydłużenie po 240 dniach wynosiło tylko 0,056%. Zaprawa z piaskiem kwarcowym (1P) uległa większej ekspansji i już po 60 dniach wynosiła 0,14% (rys. 9.13).

Rys. 9.13. Zmiany liniowe beleczek z zaprawy z piaskiem kwarcowym (1P) lub z kruszywem wapiennym (1W) w czasie [58]

Badania mikrostruktury pozwoliły na wyjaśnienie różnic w wielkości ekspansji zaprawy. W zaprawie z piaskiem kwarcowym zaobserwowano występowanie warstewek ettringitu w strefie kontaktowej kruszywo-zaczyn (rys. 9.14a), a także skupiska ettringitu rozmieszczone w zaczynie cementowym (rys. 9.14b). Obserwowana ekspansja jest wynikiem opóźnionego powstawania ettringitu. Także Grattan-Bellew [54] wykazał, że występowanie ettringitu w strefie kontaktowej matrycy cementowej
z kruszywem krzemionkowym w naparzanych zaprawach czy elementach betono- 
nych, wykazujących ekspansję spowodowaną opóźnionym powstawaniem ettringitu, 
jest dowodem że powierzchnia kruszywa odgrywa ważną rolę w procesie destrukcji.

Rys. 9.14. a) ettringit na powierzchni ziarna piasku kwarcowego, b) skupiska ettringitu w 
zaczynie cementowym [58]

Natomiast mikrostruktura zaczynu w zaprawie z kruszywem wapiennym jest 
zwarta (rys. 9.15), nie występują mikrospękania na granicy kruszywo-zaczyn, 
a w strefie przejściowej obserwuje się występowanie węglanoglinianów wapnia. 
Prawdopodobnie na zmniejszenie ekspansji zaprawy ma wpływ dobre wiązanie me-
dzy zaczynem cementowym a ziarnami kruszywa węglanowego, spowodowane 
chropowatością powierzchni ziaren kruszywa. Także zmniejszenie ekspansji można 
wyjaśnić tworzeniem węglanoglinianu w wyniku reakcji jonów glinianowych z wa-
pieniem, co wydajnie zmniejsza zawartość ettringitu w zaczynie. W związku z tym 
nie obserwuje się otoczek tej fazy wokół ziaren kruszywa.

Dobre wiązanie zaczynu cementowego z ziarnami kruszywa węglanowego 
spowodowane chropowatością powierzchni ziaren piasku wapiennego ma wpływ 
na znaczne zmniejszenie ekspansji zaprawy [59]. Zmniejszenie ekspansji można 
także wyjaśnić tworzeniem mocnego wiązania między wapieniem a zaczynem ce-
mentowym, które przeciwdziała ciśnieniu ekspansji oddzielającemu zaczyn cementowy od kruszywa. Zwarta mikrostruktura fazy C-S-H (rys. 9.15b) w zaprawie 
z kruszywem wapiennym może sprzyjać absorpcji większej ilości jonów siarczan-
owych, mogących spowodować wystąpienie ekspansji w późniejszym okresie. 
Rzeczywiście Yang i współautorzy [47] opisują późniejsze wystąpienie ekspansji w 
zaprawie z kruszywem wapiennym i wskazują na ważną rolę mikrostruktury 
w rozwoju ekspansji. Również zwarta strefa przejściowa kruszywa z matrycą ce-
mentową utrudnia migrację roztworu w tej strefie i powstawanie ettringitu. Także Grattan-Bellew [54], badając zniszczone podkłady kolejowe, wykazał, że ettringit tworzy warstewki na powierzchni ziaren kruszywa krzemionkowego w sposób podobny do pokazanego na rysunku 9.16. Jednak w wielu publikacjach stwierdza się, że pierwotną przyczyną powstania rys była reakcja alkaliów z krzemionką, natomiast opóźnione powstawanie ettringitu zachodziło po tym procesie.

Rys. 9.15. a) mikrostruktura zaprawy z kruszywem węglanowym, b) mikroanaliza zaczynu cementowego, typowa faza C-S-H w mikroobszarze 3, c) mikroanaliza potwierdzająca udział węglanoglinianu w mikroobszarze 2 [58]

Rys. 9.16. a) warstewka ettringitu na ziarnie piasku, b) analiza rentgenowska w mikroobszarze zajmowanym przez ettringit [58]
Wyniki przeprowadzonego doświadczenia, dotyczącego wyjaśnienia wpływu rodzaju kruszywa na ekspansję spowodowaną opóźnionym powstawaniem ettringitu, wskazują na znaczną rolę rodzaju kruszywa w tym procesie (rys. 9.17) [56].

Podobny, korzystny wpływ piasku wapiennego został również opisany w pracy Kurdowskiego i Duszaka [57], w której ekspansja była znacznie zmniejszona przez dodatek 15% piasku wapiennego i prawie wyeliminowana przy 30% dodatku.

![Rys. 9.17. Wpływ stopnia rozdrobnienia kruszywa na ekspansję zapraw dojrzewających od 3 do 16 godzin w temperaturze 100°C [56]](image)

Innym czynnikiem, który może wpływać na ekspansję jest współczynnik roszszerzalności termicznej różnych rodzajów kruszywa (rys. 9.18). Grattan-Bellew

![Rys. 9.18. Zależność stopnia ekspansji beleczek z zaprawy spowodowanej opóźnionym powstawaniem ettringitu w temperaturze 70°C w funkcji współczynnika rozszerzalności termicznej kruszywu [54]](image)
i współautorzy [54] stwierdzili ekspansję tylko w zaprawie z kruszywa kwarcowego, natomiast zaprawa wykonana z wapienia, granitu czy bazaltu nie wykazała ekspansji.

Piaszek o współczynniku rozszerzalności termicznej większym niż 10⁻⁶/°C (takim jak współczynnik dla kwarcu) może znaczenie odkształcać się w wysokiej temperaturze dojrzewania, powodując powstawanie mikryorys, które odgrywają rolę dróg transportowych dla roztworu w zaprawie i mogą przyspieszać ekspansję. Tymczasem Fu i współautorzy [30] nie obserwowali wpływu zmiany stosunku piasku do cementu w zakresie od 1 do 3 na zmianę ekspansji. Prawdopodobnie zwiększenie stosunku piasku do cementu w zaprawie zmniejsza zawartość cementu prowadząc do zmniejszenia ilości powstającego ettringitu. Te obserwacje mogą świadczyć o tym, że ekspansja zależna od opóźnionego powstawania ettringitu jest związana nie tylko z ilością powstającego ettringitu.

**Literatura**


9. Czynniki wpływające na wewnętrzną korozję siarczanową betonu


Korozja wewnętrzna betonu


9. Czynniki wpływające na wewnętrzną korozję siarczanową betonu


Metody zapobiegania powstawaniu opóźnionego ettringitu

Skuteczną metodą zapobiegania uszkodzeniom w następstwie powstawania opóźnionego ettringitu w betonie jest niedopuszczenie do ustalenia się we wnętrzu betonu temperatury przekraczającej 70°C. Utrzymanie temperatury mniejszej od tej wartości progowej zapobiega powstawaniu opóźnionego ettringitu oraz nadmiernej ekspansji i pękaniu elementów konstrukcji betonowej. Natomiast w temperaturach przekraczających 70°C skuteczną metodą zapobiegania późniejszej ekspansji wywołanej opóźnionym powstawaniem ettringitu jest zastosowanie dodatków mineralnych [1]. Zastosowanie dodatków mineralnych w wystarczających ilościach zapewnia trwałość betonu zapobiegając skutkom opóźnionego powstawania ettringitu, nawet w temperaturze obróbki termicznej dochodzącej do 90°C. W przypadku masywnych konstrukcji betonowych temperatura we wnętrzu betonu nie powinna przekroczyć 80°C. Powszechnie stosowane dodatki mineralne, takie jak popiół lotny (klasa F lub klasa C według ASTM), granulowany żużel wielkopiecowy, metakaolin i pucolany naturalne zapobiegają ekspansji.

na dużą zawartość Al₂O₃. Zapobieganie powstawaniu wtórnego ettringitu z mono-
siarczanu było spowodowane dostępnością znacznych ilości glinu z tego dodatku.
Dodatkowo Ramlochan i współautorzy [4] zaobserwowali, że zastosowanie meta-
akolinitu zmienia także morfologię zewnętrznej fazy C-S-H i porowatość matrycy
cementowej w początkowym okresie twarzdnienia. Może to wynikać z reakcji puco-
lanowej metakaolinitu, która zmniejsza przepuszczalność zaczynu i opóźnia proces
ekspansji [5]. Zastosowanie popiołu lotnego także obniża skutecznie ekspansję,
a efekt ten zależy od składu popiołu [3]. Kelham [6] wykazał również, że krytycz-
na temperatura wywołująca ekspansję zwiększa się w przypadku zastosowania
dodatku popiołu lotnego krzemionkowego, a dodatek 30 czy 40% popiołu zapobie-
znacznie mniejsza przy zastosowaniu 15% popiołu i nie występowała przy zawar-
tości 30% popiołu.

Kelham [6] zauważył, że zastosowanie granulowanego żużla wielkopiecowe-
go zwiększa temperaturę graniczną trwałości ettringitu, a ekspansji zapobiega
dodatek do 30% do 50% żużła. Ramlochan i współautorzy [3] uważają, że zstąp-
ienie 25% cementu granulowanym żużlem wielkopiecowym może zmniejszać
ekspansję, ale w przypadku zastosowania cementu bogatszego w SO₃ lub sód
i potas, może być konieczny większy dodatek żużła. Miller i Conway [8] stwier-
dzili, że zstąpienie 17,5% cementu żużlem wielkopiecowym wystarczy do ograni-
czenia ekspansji i w przypadku cementów wykazujących średni poziom eksp-
ansji już dodatek 5% żużła przeciwdziała jej wystąpieniu. Oprócz zmniejszenia
stosunku SO₃/Al₂O₃ dodatek żużła wielkopiecowego wpływa na zmniejszenie pH
roztworu w porach do zakresu, w którym trwałość ettringitu jest większa. Miller
i Conway [8] przypuszczają także, że podczas reakcji żużła wielkopiecowego
z wodorotlenkiem wapnia, uwalnianym w wyniku hydrolizy krzemianów wapnia
w cementie, zachodzi wiązanie jonów wapnia, utworzenie w wyniku takiego wiąza-
nia dymencji cementowej w fazie C-S-H i porowatość zaczynu, co utrudnia dyfuzję
jonów sodu i potasu, przyczyniając się do ograniczenia opóźnionego powstawania ettringitu.

Wyniki badań Ekolu i współautorów [9] dotyczące wpływu azotanu litu na eksp-
ansję powodowaną reakcją alkaliów z krzemionką i opóźnionym powstawaniem
ettringitu wykazały, że jony litu tworzą w zaczynie cementowym słabo rozpusz-
czalne związki, co utrudnia dyfuzję jonów sodu i potasu, przyczyniając się do
ograniczenia opóźnionego powstawania ettringitu.

We Francji zostały opracowane zalecenia dotyczące obiektów inżynierii lądo-
wej i budynków, w których zastosowano elementy betonowe o dużych wymiarach,
będących w kontakcie z wodą lub narażonych na wilgotne środowisko. Zalecenia
te obejmują różne poziomy zapobiegania uszkodzeniom w następstwie opóźnione-
go powstawania ettringitu, określone w zależności od kategorii konstrukcji (albo
elementów konstrukcji) oraz warunków środowiskowych. Zalecenia dotyczą zarówno projektowania i wykonania konstrukcji oraz wytwarzania i układania betonu. Te metody zapobiegawcze mają na celu unikanie długotrwałego kontaktu elementów konstrukcji betonowej (potencjalnie podatnych na opóźnione powstawanie ettringitu) z wodą w trakcie eksploatacji konstrukcji, ograniczenie maksymalnej temperatury osiągniętej w betonie masywnym, obejmują też kontrolowanie procesu obróbki cieplnej prefabrykatów [10].

Badania laboratoryjne przyspieszające proces opóźnionego powstawania ettringitu (zastosowanie wczesnego ogrzewania betonu do temperatury przekraczającej 65°C, zwiększonej zawartości siarczanu wapnia w cemencie oraz jego większej powierzchni właściwej) wykazały wpływ tych czynników na zwiększenie ekspansji oraz na zmniejszenie współczynnika sprężystości betonu. Monitoring dynamicznego stopień sprężystości betonów wykazał jednak, że parametr ten może ulegać ponownemu zwiększeniu, gdy proces pękania ustaje, prawdopodobnie ze względu na stopniowe wypełnianie porów i rys przez utworzony ettringit [11].

Wielu badaczy stwierdziło, że opóźnione powstawanie ettringitu spowodowało znaczne, przedwczesne uszkodzenia betonowych autostrad. W Hiszpanii przeprowadzono badania dotyczące zmniejszenia wtórnego powstawania ettringitu w betonie przez zastosowanie domieszek chemicznych jako inhibitorów krystalizacji ettringitu. Zaoferowano, że jeżeli zawartość ettringitu zostanie zmniejszona, nastąpi jednoczesne zmniejszenia ekspansji i pękania betonu. Zastosowane inhibitory fosfonianowe okazały się skuteczne w zmniejszaniu zarodkowania i powstawania ettringitu w betonie, co również zmniejszało ekspansję i pękanie elementów betonowych [12].

Jedną z najbardziej popularnych metod zapobiegawczych, zmniejszających ryzyko wystąpienia ekspansywnych reakcji chemicznych, mianowicie reakcji alka-liów z krzemionką i opóźnionego powstawanie ettringitu w stwardniałym betonie jest, jak już wspomniano wielokrotnie w tym opracowaniu, zastosowanie dodatków mineralnych [13]. Wiele badań dotyczy wykorzystania popiołów lotnych w zmniejszaniu ekspansji w następstwie reakcji alkaliów z kruszywem, natomiast mniej uwagi poświęcono efektywności stosowania dodatków mineralnych w celu zapobiegania opóźnionemu powstawaniu ettringitu.

Wyniki badań zaprezentowane w pracy Silva i współautorów [14] dotyczące wpływu popiołów lotnych (FA) i metakaolinu (MK) w zapobieganiu opóźnionemu powstawaniu ettringitu w betonie wykazały, że zastosowanie tych dodatków zmniejsza ekspansję betonu spowodowaną tym procesem.

Degradacja konstrukcji betonowych spowodowana opóźnionym powstawaniem ettringitu jest problemem, który dotyka wiele betonowych konstrukcji na całym świecie. Uszkodzenia te są spowodowane tworzeniem ekspansywnego ettringitu wewnątrz stwardniałego betonu. Problem ten jest bardzo trudny do rozwiązania,
ponieważ obecnie nie ma dobrej metody naprawy konstrukcji betonowych, uszkodzonych w wyniku tego procesu. Stąd istnieje pilna potrzeba stosowania metod zapobiegawczych, które mogą umożliwić hamowanie opóźnionego powstawania ettringitu w elementach betonowych i w konstrukcji budowlanych.

**Literatura**


Równoczesne występowanie reakcji alkaliów z krzemionką i powstawanie opóźnionego ettringitu

Równoczesne występowanie w budowlach betonowych opóźnionego powstawania ettringitu i reakcji alkaliów z krzemionką sprawia trudności w wyjaśnieniu mechanizmu ekspansji. Niektóre odmiany krzemionki, obecne w kruszywie, mogą reagować z wodorotlenkami sodu i potasu zawartymi w roztworze w porach betonu, tworząc żel uwodnionego krzemianu sodowo-potasowo-wapniowego, który pęczniąc powoduje powstawanie wewnętrznych naprężeń i ekspansję betonu [1].


W świetle dyskusji literatury staje się oczywiste, że zagadnienie równoczesnej reakcji alkaliów z krzemionką oraz opóźnionego powstawania ettringitu, lub następującego niedługo po pierwszej reakcji, nie jest doświadczalnie udokumentowane ani w pełni wyjaśnione.
11.1. Wpływ zawartości SO₃ w cemencie na opóźnione powstawanie ettringitu

 Wyniki doświadczeń wielu autorów [12, 13] wykazały, że ettringit nie jest trwały w trakcie obróbki cieplnej już w temperaturze przekraczającej 70°C. Te wyniki doświadczalne znalazły potwierdzenie teoretyczne w analizie termodynamicznej przeprowadzonej przez Damidota i Glassera [14]. Najważniejszym wnioskiem wynikającym z tych analiz jest stwierdzenie, że w temperaturze 85°C ettringit, w przypadku dużej zawartości alkaliów, jest trwałą fazą tylko w przypadku dużego stężenia jonów siarczanowych w fazie ciekłej. Wyniki badań zapraw z kruszywem reaktywnym (6% opalu) oraz z cementami o zróżnicowanej zawartości siarczanu potasu, poddanych naparzeniu w temperaturze 90°C wykazały znaczne różnice ekspansji zależne od zawartości tego składnika [15].

Jak wynika z krzywych pokazanych na rysunku 11.1 ekspansja zapraw zależy głównie od zawartości SO₃ w cemencie i największą ekspansję równą 0,34% wykazała zaprawa z cementu ze zwiększoną zawartością SO₃, do którego oprócz gipsu dodano K₂SO₄.

![Rys. 11.1. Rozszerzalność beleczek zapraw z kruszywem reaktywnym i cementami o zróżnicowanej zawartości siarczanów wapnia i potasu [15](image)](image)

Wyniki badań mikrostruktury zapraw naparzanych po 150 dniach dojrzewania pod elektronowym mikroskopem skaningowym wykazały we wszystkich zaprawach występowanie w miejscu ziaren opalu żelu uwodnionego krzemianu potasuowo-wapniowego (rys. 11.2). W zaprawie z cementu portlandzkiego, o normowej zawartości SO₃, występuje również masywny ettringit w pustkach powietrznych częściowo je wypełniając, a także w matrycy cementowej w formie niewielkich skupisk, w pobliżu niezhydratyzowanych ziaren cementu (rys. 11.3).
11. Równoczesne występowanie reakcji alkaliów z krzemionką...

Rys. 11.2. a) krzemian potasowo-wapniowy w miejscu ziarna opalu, b) mikroanaliza rentgenowska w mikroobszarze 1

Rys. 11.3. a) ettringit masywny w pustce powietrznej (1) i konglomeraty tej fazy w zaczynie cementowym o normowej zawartości siarczanu, b) mikroanaliza rentgenowska w mikroobszarach 1 i 2

W zaprawie z cementem o zwiększonej zawartości SO₃ występuje masywny ettringit tworzący warstwki na powierzchni ziaren piasku oraz wypełniając rysy w matrycy cementowej oraz rysy rozchodzące się od skorodowanych ziaren opalu (rys. 11.4).
Obserwacje mikrostruktury zapraw wykazały, że reakcja z wodorotlenkiem potasu spowodowała utworzenie w miejscu ziaren opalu żelu uwodnionego krzemuń potasowo-wapniowy, jednak o małej zawartości wapnia. W pracach [13, 16, 17] wykazano, że ekspansja związaną z reakcją alkaliów z krzemionką powoduje żel zawierający niewielką zawartość wapnia. Jednocześnie zaprawa o bardzo niewielkiej ilości SO₃ (zaprawa II) oraz zaprawa z cementu o normowej zawartości gipsu (zaprawa I) nie wykazują pęcznienia. W badanych zaprawach reakcja alkaliów z krzemionką jest w niewielkim stopniu zaawansowana, co może być spowodowane absorpcją większej ilości jonów potasu w strukturę C-S-H, podczas dojrzewania betonu w podwyższonej temperaturze. Potwierdzeniem tego przyszczlenia jest mniejsza zawartość alkaliów rozpuszczalnych w zaczynach dojrzewających w podwyższonej temperaturze [18]. Shayan i Ivanusec [7] uważają, że pomiar długości początkowej próbki jest wykonywany po częściowym przereagowaniu
alkaliów z krzemionką podczas obróbki cieplnej, stąd dalsze pomiary wykazują mniejszy przyrost odkształceń, a obserwowana ekspansja podczas dalszego dojrzewania jest mniejsza.

Mikrostruktura zaprawy z cementu o zwiększonej zawartości siarczanów wapnia i potasu, wykazującej duże pęcznienie, różni się od mikrostruktury zapraw o małej lub normowej zawartości siarczanu wapnia. W zaprawie tej na powierzchni ziaren kruszywa powstają warstwki ettringitu, a masywny ettringit występuje także w rysach utworzonych w matrycy cementowej. Obserwuje się też występowanie ettringitu w rysach rozchodzących się od skorodowanego ziarna opalu do matrycy cementowej. Ong [19] znalazł w zaprawie po obróbce termicznej wtórny ettringit wypełniający głównie rysy powstałe w wyniku reakcji alkaliów z krzemionką. Uważa on, że duża ekspansja podczas i bezpośrednio po obróbce cieplnej jest związana wyłącznie z reakcją alkaliów z krzemionką, natomiast późniejsza ekspansja może być częściowo spowodowana opóźnionym powstawaniem ettringitu. Także Shayan i Quick [4] twierdzą, że głównym powodem zniszczenia betonu w takich przypadkach jest reakcja alkaliów z krzemionką. Johansen i współautorzy [20] wykazali jednak, że naprężenia wywołane zelem powstającym w reakcji alkaliów z krzemionką mogą powodować powstawanie rys w kruszywie i w otaczającym zaczynie cementowym, lecz nie w strefie przejściowej kruszywa z zaczynem. Natomiast Diamond i Ong [21] wykazali, że dojrzewanie w podwyższonych temperaturach elementów betonowych może zapoczątkować reakcję alkaliów z krzemionką w przypadku niektórych reaktywnych kruszyw, a późniejsze przyspieszenie tej reakcji zachodzi po ochłodzeniu tych elementów i dalszym ich dojrzewaniu w wilgotnych warunkach. Na tej podstawie można przypuszczać, że pierwotną przyczyną powstawania rys w zaprawach jest reakcja alkaliów z krzemionką, której szybkość wzrasta podczas obróbki termicznej, natomiast powstający ettringit wypełnia te rysy lub pustki w strefie przejściowej z ziarnami kruszywa.

 Wyniki przeprowadzonych badań [22] nie potwierdzają opinii, że reakcja alkaliów z krzemionką jest głównym powodem zniszczenia mikrostruktury, gdyż zaprawa przygotowana z cementu zawierającego mało SO₃ oraz zaprawa z cementu zawierającego normową ilość siarczanu wapnia w czasie dojrzewania przez 150 dni nie wykazują pęcznienia. Natomiast zaprawa ze zwiększoną zawartością SO₃ wykazuje największą rozszerzalność. Mikrostruktura tej zaprawy wyróżnia się występowaniem warstewek ettringitu wypełniających wytworzone pustki w strefie przejściowej zaczynu z kruszywem. Jest to cecha charakterystyczna zapraw wykazujących ekspansję związaną z opóźnionym powstawaniem ettringitu.

Damidot i Glasser [23, 14], analizując równowagi fazowe w układzie CaO-Al₂O₃-CaSO₄-H₂O w temperaturach 25°C i 85°C w oparciu o obliczenia termodynamiczne, wykazali, że minimalna zawartość SO₃²⁻ w fazie ciekłej, warunkująca
trwałość ettringitu, zależy od temperatury i zawartości jonów sodu i potasu. Stwierdzili oni, że w temperaturze 85°C ettringit jest trwałą fazą tylko przy dużym stężeniu jonów siarczanowych w fazie ciekłej. Dane zaczerpnięte z pracy Glassera [24] wykazują, że o trwałości ettringitu decyduje stosunek SO₃/Na₂Oₑ i w temperaturze 25°C ettringit jest trwał przy małej zawartości SO₄²⁻ w fazie ciekłej, natomiast w temperaturze 85°C ettringit występuje w fazie stałej, gdy stosunek molowy SO₃/Na₂Oₑ w fazie ciekłej jest większy od 0,19.


11.2. Wpływ zawartości sodu

Badania wpływu zawartości sodu na ekspansję i mikrostrukturę zapraw bez i z opalem poddanych obróbce cieplnej w temperaturze 90°C, a następnie dojrzewających w wodzie (w temperaturze pokojowej) wykazały różne stopnie ekspansji w funkcji czasu (rys. 11.5) [25].

Pokazane na rysunku 11.5 zmiany liniowe zapraw w zależności od czasu dojrzewania ujawniają podobny przebieg ekspansji w wszystkich próbkach, pomimo znacznych różnic wielkości. Początkowa ekspansja jest bardzo duża w przypadku próbek z dodatkiem opalu, z cementu o dużej zawartości ekwiwalentu sodowego, a mała gdy Na₂Oₑ jest niewielkie lub nie ma dodatku opalu. Można przypuszczać, że początkowa ekspansja próbek jest wywołana reakcją alkaliów z krzemionką. Z tego względu jest ona trzykrotnie większa w przypadku zaprawy

Rys. 11.5. Zmiany liniowe zapraw po obróbce cieplnej, w funkcji czasu dojrzewania: 1 – bez opalu; 2, 3, 4 – z 6% opalu; 1 i 2 – zaw. Na₂O₂ = 0,77%; 3 – zaw. Na₂O₂ = 1,49%; 4 – zaw. Na₂O₂ = 1,63%

Takie przypuszczenie potwierdziły przeprowadzone po 360 dniach dojrzewania zapraw obserwacje mikrostruktury metodą elektronowej mikroskopii skaningowej zarówno przełomów próbek, jak i ich zgładów. Do obserwacji powierzchni zgładów wykorzystano elektryny wstecznie rozproszone, a dodatkowo w wybranych mikroobszarach wykonano mikroanalizy rentgenowskie.

W mikrostrukturze zaprawy (rys. 11.6) występują warstewki ettringitu na powierzchni ziaren kruszywa (rys. 11.6a) oraz konglomeraty włóknistego ettringitu, tworzące w pustkach powtarzających formy kuliste ze spieczonej bielizn (rys. 11.6b). Otoczki masowych ettringitu na powierzchni ziaren piasku są charakterystyczne dla ekspansji związanej z opóźnionym jego powstawaniem [29]. Natomiast wyniki te nie potwierdzają spostrzeżeń Shayana i Ivanuseca [7], którzy stwierdzili, że w zaprawie nie zawierającej reaktywnego kruszywa, pomimo zastosowania cementu o składzie sprzyjającym zwiększonej zawartości ettringitu nie występowała żadna ekspansja.
Rys. 11.6. Mikrostruktura zaprawy po obróbce cieplnej po 360 dniach dojrzewania w wodzie, cement portlandzki i piasek kwarcowy: a) warstewki ettringitu na powierzchni ziarna piasku, b) konglomeraty włóknistego ettringitu w pustkach powietrznych

Rys. 11.7. a) ettringit na powierzchni ziarna kruszywa (zaprawa z opalem), b) masywny ettringit w pustkach powietrznych, obserwacje zgładu w elektronach wstecznie rozproszonych, c) analiza rentgenowska w mikroobszarze ettringitu
11. Równoczesne występowanie reakcji alkaliów z krzemionką... 241

Z kolei wyniki badań Owsiak [31] wykazują, że wystąpienie ekspansji w tej zaprawie może być spowodowane jedynie opóźnionym powstawaniem ettringitu. Wyniki badań ekspansji zaprawy po obróbce cieplnej z kruszywem zawierającym opal wykazały, że po 150 dniach jest ona nawet trzykrotnie większa niż ekspansja zaprawy bez składnika reaktywnego. Mikrostruktura tej zaprawy charakteryzuje się występowaniem uwodnionego krzemianu potasowo-wapniowego w miejscach poprzednio zajmowanych przez ziarna opalu oraz warstewek masywnego ettringitu na powierzchni ziaren piasku, o grubości dochodzącej do 30 µm (rys. 11.7).

Podwyższone temperatura (90°C) obróbki cieplnej zapraw, z cementu o dużej zawartości sodu i potasu oraz z dodatkiem opalu, powoduje przyspieszenie reakcji alkaliów z krzemionką i wyróżnia się dużą początkową ekspansją. Podobne wyniki uzyskali Diamond i Ong [21], którzy stwierdzili, że zastosowanie obróbki termicznej przyspiesza reakcję alkaliów z krzemionką, a dodatkowym czynnikiem jest przechowywanie zaprawy w warunkach wilgotnych. W późniejszych badaniach Diamond [32, 29] również stwierdził ekspansję i zniszczenie zapraw po kilku tygodniach po obróbce cieplnej w przypadku cementów o dużej zawartości sodu i potasu, spowodowane reakcją alkaliów z krzemionką.

Rys. 11.8. a) ettringit wypełniający rysę wokół ziarna piasku, b) mikroanaliza rentgenowska ettringitu

Powstaniu zwiększonej ilości ettringitu sprzyja skład zastosowanego cementu. Wieker i współautorzy [13] wykazali, że podczas obróbki cieplnej występują często warunki, w których ettringit nie jest trwały, a opóźnione powstawanie ettringitu zależy od zawartości alkaliów w fazie ciekłej i zachodzi dopiero po dłuższym czasie dojrzewania w powietrzu nasyconym parą wodną lub w wodzie. Rozkład ettringitu w podwyższonych temperaturach w zaczynach z cementów o dużej zawartości alkaliów przebiega szybciej, a powstawanie ettringitu w trakcie dojrze-
Korozja wewnętrzna betonu

wania zaprawy po naparzaniu następuje z opóźnieniem. Ze względu na dużą zawartość gipsu oraz tlenków sodu i potasu w cementach, we wszystkich badanych przez Wiekera [13] zaprawach stężenia jonów \( \text{SO}_2^- \) i \( \text{Na}^+ \) w fazie ciekłej zaprawy po obróbce cieplnej były wysokie. W odniesieniu do obliczonych przez Glassera [24] stężeń jonów w fazie ciekłej w równowadze z fazą stałą zawierającą ettringit, należy się spodziewać, że we wszystkich zaprawach wystąpiły warunki konieczne do powstawania ettringitu w czasie dojrzewania w temperaturze 20°C, po obróbce cieplnej. Stąd w zaprawach z cementów o dużej zawartości siarczanów i alkaliów wystąpiły w trakcie obróbki cieplnej warunki, w których ettringit nie był trwały.

Także Taylor i współautorzy [33], omawiając wyniki badań Kelhama [34], dotyczące wpływu dodatku alkaliów, stwierdzili, że ekspansja jest większa przy większej zawartości sodu i potasu w cementach, równocześnie bogatych w \( \text{SO}_3 \). Zgodnie z wnioskami Taylora i współautorów [33] są dwa powody, które mogą wyjaśniać te zależności. Po pierwsze, zwiększenie zawartości sodu i potasu może powodować zwiększenie stopnia hydratacji alitu we wczesnym okresie twardnienia, a utworzona faza C-S-H podczas obróbki termicznej adsorbuje jony siarczanowe. Po drugie, wodorotlenki sodu i potasu zwiększaenie pH roztworu w porach, co stwarza korzystne warunki dla powstawania ettringitu. Opóźnione powstawanie ettringitu zmniejsza zawartość jonów siarczanowych w roztworze w porach betonu, a jednocześnie dla zapewnienia równowagi zwiększa się stężenie jonów wodorotlenowych.

Opóźnionemu powstawaniu ettringitu, jak wykazali Divet i Randriambolona [35], sprzyja zmniejszenie zasadowości spowodowane reakcją alkaliów z krzemionką lub wypłukiwaniem alkaliów z zaprawy, podczas dojrzewania próbek w wodzie. Wyniki badań Escadelis [36] potwierdzają, że duża zawartość sodu i potasu zwiększa ryzyko wystąpienia ekspansji zaprawy z cementu z dużą zawartością siarczanu, dodawanej obróbce cieplnej. Także Brown i Bothe [37] uważają, że powstawanie ettringitu jest opóźnione w obecności roztworu w porach o dużym stężeniu wodorotlenków sodu i potasu, jakie występuje w przypadku cementów o dużej zawartości tych składników. Natomiast reakcja alkaliów z krzemionką zmniejszająca stężenie wodorotlenków sodu i potasu, mogłaby sprzyjać szybszemu powstawaniu ettringitu. Jednak okres reakcji krzemionki przypada znacznie później w stwardniałym betonie i nie będzie miał wpływu na trwałość ettringitu, która jest ważna w pierwszych dwóch dniach.
11.3. Znaczenie ettringitu towarzyszącego reakcji alkaliów z kruszywem

W kilkuletnich zaprawach przygotowanych z cementów o zwiększonej zawartości alkaliów i kruszyw reaktywnych (granit i piasek kwarcowy z opalem) [38, 39, 40], wystąpiła ekspansja (rys. 11.9), jednak krzywa ekspansji nie wykazywała charakterystycznego kształtu związanego z reakcją kruszywa granitowego z wodorotlenkami sodu i potasu w zaprawie dojrzewającej w warunkach laboratoryjnych [41]. Ekspansja zwiększała się w początkowych kilku miesiącach, a następnie w okresie 9-21 miesięcy jej wzrost był znacznie większy, jednocześnie pojawiły się rysy na powierzchni beleczek, typowe dla reakcji alkaliów z krzemionką. Po dwóch latach rozszerzalność zaprawy szybko zwiększała się, aż do 30 miesiąca, po tym okresie ekspansja postępowała nadal, lecz znacznie wolniej.

![Rys. 11.9. Zmiany liniowe zapraw w funkcji czasu [27]](image)

Inny przebieg ekspansji wystąpił w przypadku zaprawy z piasku kwarcowego z dodatkiem opalu. Rozszerzalność beleczek z zaprawy przekroczyła graniczną normową rozszerzalność wynoszącą 0,1% już po dwóch miesiącach i jej dalszy przebieg do jednego roku był charakterystyczny dla zapraw wykonanych z kruszywa szybko reagującego z alkaliami, dojrzewających w warunkach laboratoryjnych, w temperaturze 38°C. W okresie od jednego do dwóch lat przyrost długości próbek był nieco wolniejszy, a po tym okresie znów szybszy i utrzymywał się przez 49 miesięcy, przekraczając 0,6% [27].

Obserwacje preparatów uzyskanych w wyniku przełamu próbek zaprawy pod elektronowym mikroskopem skaningowym wykazały obecność uwodnionego żelu krzemianu potasowo-sodowo-wapniowego (rys. 11.10) oraz dobrze wykrystalizowanego ettringitu lub jego masywnej formy, wypełniającej rysy i pory (rys. 11.11).
Rys. 11.10. Mikrorysy w zaprawie z kruszywem granitowym wypełnione żelem uwodnionego krzemianu potasowo-wapniowego oraz mikropęknięcia w strefie przejściowej kruszywozaczyn wypełnione ettringitem (po czterech latach dojrzewania w temperaturze 38°C, wilgotność względna > 95%)

Rys. 11.11. a) wtórny ettringit w zaprawie z granitem wypełniający mikropęknięcia w strefie przejściowej kruszywozaczyn, b) por powietrzny w zaprawie z piaskiem kwarcowym z dodatkiem opalu wypełniony masowym ettringitem (po czterech latach dojrzewania w temperaturze 38°C, wilgotność względna > 95%), c) mikroanaliza rentgenowska ettringitu
W jednej ze swoich publikacji Grattan-Bellew [41] zaproponował w odniesieniu do opublikowanych wyników badań [39], przybliżenie krzywej ekspansji beleczek zaprawy z kruszywem granitowym liniami prostymi przedstawiającymi zależność rozszerzalności od pierwiastka kwadratowego z czasu dojrzewania próbek (rys. 11.12). Proces rozszerzalności próbek podzielił on na trzy fazy. Pierwsza faza obejmuje około 9 miesięcy i jest okresem początkowym ze stopniem ekspansji 6·10^{-3}/miesiąc^{1/2}. Następnie przypada główna faza reakcji alkaliów z krzemionką, której towarzyszy stopień ekspansji 40·10^{-3}/miesiąc^{1/2}. W trzeciej fazie stopień ekspansji wynosi 440·10^{-3}/miesiąc^{1/2}. Ostatnia faza rozszerzalności nie jest zdańiem Grattana-Bellewa [41] charakterystyczna dla ekspansji zaprawy wywołanej reakcją alkaliów z krzemionką.

Rys. 11.12. Krzywa ekspansji zaprawy z cementu o dużej zawartości Na₂O, i kruszywem granitowym w funkcji pierwiastka kwadratowego miesięcy. Stopnie ekspansji wyznaczono z nachylenia odcinków prostoliniowych ekspansji [27].

Zastosowana analogiczna aproksymacja prostoliniowymi odcinkami krzywej ekspansji zaprawy z piaskiem kwarcowym z dodatkiem opalu (rys. 11.13) pozwoliło na ustalenie, że stopień rozszerzalności w pierwszej fazie wynosi 88·10^{-3} \%/miesiąc^{1/2}, a w drugiej fazie zmniejsza się do 57·10^{-3} \%/miesiąc^{1/2}. W trzeciej fazi szybkość ekspansji ponownie wzrasta i jej stopień wynosi 137·10^{-3} \%/miesiąc^{1/2} [27]. W zaprawie z piaskiem kwarcowym z dodatkiem opalu, oprócz produktów reakcji kruszywa z alkaliami występuje również ettringit w rysach i pustkach powietrznych. Przypuszczalnie, na powstawanie, a raczej na rekrysalizację ettringitu, mają wpływ wcześniej powstałe rysy w reakcji alkaliów z kruszy-
wem [10, 11]. Charakterystyczną cechą mikrostruktury badanych zapraw jest duża zawartość ettringitu, który wypełnia rysy w strefie przejściowej między kruszywem a matrycą cementową, co świadczy o współwystępowaniu reakcji alkaliów z krzemianką i opóźnionego powstawania ettringitu.

Dobrą ilustracją mikrostruktury zapraw z kruszywa granitowego i piasku kwarcowego stanowi zdjęcie uzyskane za pomocą elektronowego mikroskopu skanującego. Na rysunku 11.10 pokazano charakterystyczne spękania występujące w beleczkach zaprawy z granitem, wypełnione produktami reakcji alkaliów z kruszywem oraz widoczne mikropleknięcie w strefie przejściowej kruszywo-zaczyn wypełnione ettringitem. Rysy otaczają ziarna kruszywa, a także tworzą się spękania, przechodzące na wskaźnik przez matrycję cementową.

Ettringit występujący w rysach otaczających kruszywo wykazuje zazwyczaj ułożenie listewkowych kryształów, zorientowanych prostopadle do powierzchni ziarna kruszywa lub do ścianek rysy. W oparciu o badania laboratoryjne Fu [10, 11] potwierdził wpływ wcześniej powstałych rys na rekryystalizację ettringitu przypuszczając, że są one obszarami sprzyjającymi powstawaniu wtórnego ettringitu. Ettringit w badanych próbkach zaprawy jest dobrze wykrystalizowany, a obserwacje przy większym powiększeniu wykazują, że pojedyncze kryształy mają pokrój wydłużonych pręcików, miejscami zrosniętych (rys. 11.11). Szerokość rys wokół ziaren kruszywa wynosi około 30 μm, a tworzą się one przeważnie tylko wokół niektórych ziaren, pozostałe ziarna mają prawdopodobnie zbudowaną typową warstwę przejściową z matrycją cementową.

W zaprawie z piasku kwarcowego z dodatkiem opalu oprócz żelu uwodnionego krzemianu sodowo-potasowo-wapniowego w rysach i pustkach powietrznych wy-
stępuł mikrokryystaliczny ettringit, czasem określony jako masywny [29]. Przypuszcza się, że reakcja alkaliów z kruszywem sprzyja powstawaniu ettringitu nie tylko przez wcześniejsze tworzenie rys, ale także poprzez wytworzenie sprzyjających warunków dla reakcji w fazie ciekłej w porach betonu z punktu widzenia równowagi chemicznej [18, 37]. W badanych zaprawach zastosowano cementy o dużej zawartości potasu i sodu, które wytwarzają duże stężenie ich wodorotlenków w roztworze wypełniającym pory [37].


11.4. Fazy uboczne towarzyszące reakcji alkaliów z krzemionką

W betonach zniszczonych przez reakcję alkalia-krzemionka obok żelu uwodnionego krzemianu sodowo-potasowo-wapniowego występują często uboczne produkty reakcji, z których najczęściej wymieniany jest ettringit [49], węglan wapnia a czasem thumazyt [50]. W badaniach [38], w których obserwowano pod elektronowym mikroskopem skaningowym zgłady próbek pobranych z beleczek zaprawy z kruszywem reaktywnym stwierdzono w licznych rysach obecność dobrze wykrystalizowanego ettringitu (rys. 11.14), natomiast przy zewnętrznych krawędziach próbek w obszarze białego nalotu dużo produktów carbonatyzacji (rys. 11.15).
Mikroanaliza rentgenowska w obszarze obejmującym mikropęknięcia potwierdza obecność ettringitu oraz niewielkich ilości krzemu i alkaliów, co może świadczyć o obecności uwodnionego żelu krzemianu sodowo-potasowo-wapniowego (rys. 11.16).

Mikropęknięcia poprzez ziarna reaktywnego kruszywa wypełniał żel uwodnionego krzemianu sodowo-potasowo-wapniowego, duże kryształy ettringitu występowyły głównie w mikropęknięciach i pustkach w zaczynie. W niektórych przypadkach zastępuje on prawdopodobnie wcześnie utworzony żel krzemianowy. Towarzyszące reakcji alkaliów z krzemionką występowanie dużych ilości ettringitu w betonach wykazali Petifer i Nixon [47], którzy przypisywali jego powstanie atakowi zewnętrznego roztworu siarczanów. W badanych zaprawach taki mechanizm nie miał miejsca, gdyż nie było zewnętrznych siarczanów, zarówno w oto
czeniu, jak i w kruszywie. Zastępowanie żelu uwodnionego krzemianu przez et
tringit wskazuje prawdopodobnie, że reakcja alkaliów z krzemionką osiągnęła fazę zaawansowaną zanim ettringit się pojawił. W badanych zaprawach nie było dostę
pu siarczanów z zewnątrz, co wskazuje, że krystalizacja ettringitu jest kontrolowa
na prawdopodobnie przez inny czynnik. Również Salomon i współautorzy [51] obserwowali kryształy wtórnego ettringitu w reakcji alkaliów z krzemionką postępującej bez dostępu jonów siarczanowych z zewnątrz.

Ilościowa analiza rentgenowska i analiza termiczna [52] wykazują, że nie ma różnic w zawartości ettringitu w próbkach przed i po, co sugeruje, że duże kryształy wtórnego ettringitu powstały przez rekrytalizację pierwotnie rozproszonej fazy. Proces ten był prawdopodobnie wspomagany przez zwiększoną przepusz
czalność wynikającą z licznych mikropęknięć spowodowanych reakcją alkaliów z krzemionką.

**Literatura**


[27] Owsiak Z., Znaczenie ettringitu towarzyszącego reakcji kruszywa z alkaliami w kilku-latnich zaprawach, „Cement – Wapno – Beton”, 1, 2007, s. 40-46
11. Równoczesne występowanie reakcji alkaliów z krzemionką...


[40] Owsiak Z., Reakcja kruszywa z alkaliami w przypadku stosowania cementu o malej zawartości sodu i potasu, „Cement – Wapno – Beton”, nr 4, 2006 s. 241-246.


Rozdział 12

Przykłady konstrukcji uszkodzonych w wyniku reakcji alkaliów z krzemionką i opóźnionego powstawania ettringitu


Losową mapę spękań, jak również występowanie wewnętrznych pęknięć zaobserwowano w elementach mostowych w Malezji. Pierwszy przypadek odnotowano na głowicy pala z Pl. Pontian w Rompin w latach 1986/1987 [13, 14], a przeprowadzone badania potwierdziły obecność reakcji alkalia-krzemionka [15]. Kilka innych przypadków uszkodzeń odnotowano w Sabah, np. most Tamparuli w latach 2004-2006 (rys. 12.2) [16].
Podobny schemat spęków wystąpił na powierzchni elementów, z których zbudowane było molo w Kuala Lumpur, a badania laboratoryjne wykazały jako przyczynę uszkodzeń opóźnione powstawanie ettringitu (rys. 12.3).

Dwa mechanizmy niszczenia betonu występujące równocześnie: reakcję alka-liów z krzemionką oraz opóźnione powstawanie ettringitu zidentyfikowano w be-
12. Przykłady konstrukcji uszkodzonych w wyniku reakcji alkaliów z krzemionką...

tonie tworzącym zaporę w Czechach w Vrané nad Vltavou, usytuowaną na Weltawie, 15 km na południe od Pragi [18]. Tama została zbudowana w latach 1930-1936 jako część pierwotnej elektrowni wodnej na rzece Weltawa i jest eksploatowana do chwili obecnej. Badania laboratoryjne rdzeni betonu pobranych z elementów tamy jeden metr nad lustrem wody wykazały, że opóźnione powstanie ettringitu było najważniejszą przyczyną degradacji betonu. W pracy Godarta i Diveta [19] przedstawiono wiele przykładów konstrukcji betonowych uszkodzonych przez opóźnione powstanie ettringitu. We Francji tę przyczynę korozji betonu stwierdzono po raz pierwszy w 1997 roku [20] w dużych elementach mostów betonowanych na miejscu. Uszkodzenia mostów były spowodowane opóźnionym powstaniem ettringitu i występowały głównie wewnątrz masywnych elementów mostów, będących w kontakcie z wodą lub narażonych na dużą wilgotność środowiska (filary, poprzeczne belki na filarach i przyczółkach itp.). Stwierdzony w betonie ettringit był głównie słabo krystaliczny i masywny, ponadto występował w zacynie cementowym lub w strefie przejściowej kruszywo-zaczyn. Większość przypadków destrukcji mostów zostały szczegółowo przedstawione w pracy Diveta [21]. Rozwój uszkodzeń w następstwie opóźnionego powstania ettringitu jest we wszystkich stwierdzonych przypadkach powolny, a szybkość zwiększenia rozwoju wynosi od 0,1 mm/m/rok.

Rys. 12.4. Widok ogólny mostu Ondes
Most Ondes, położony w pobliżu Tuluzy, został ukończony i oddany do użytku w roku 1955. Składa się z czterech wstępnie sprzężonych belek, które są połączone ze sobą za pomocą górnej płyty i poprzecznych belek. Most ten ma długość 202 m i składa się z pięciu niezależnych przęsła. Średnia wysokość filara wynosi 6,8 m. Betonowe filary składają się z dwóch okrągłych kolumn o średnicy 2 m, połączonych belkami oczepów (rys. 12.4). Uszkodzenie wystąpiło tylko w belce żelbetowej, równoległościennego oczepu o wysokości 1,5 m, długości 8,2 m i 2,7 m szerokości (rys. 12.5), zabetonowanej na miejscu w 1954 roku. Pierwsze widoczne uszkodzenia zaobserwowano po prawie trzydziestu latach.

Uszkodzenie występuje jako sieć szeroko rozstawionych wielokierunkowych pęknięć o dużym rozstawie, czasem o uprzywilejowanej orientacji, która zależy od rozmiarów zbrojenia (rys. 12.5). Rozwarcie pęknięć waha się od kilku dziesięciu milimetrów do kilku milimetrów, zależnie od ich położenia. Pęknięcia zawierają często widoczną wilgoć i sporadycznie wypływa z nich biały lub szarawy żel. Uszkodzenie pojawiało się głównie na końcach belek oczepów oraz na powierzchniach, które są bezpośrednio narażone na deszcz i wodę spływającą z chodników. Nie stwierdzono uszkodzeń w centralnej części belki oczepu. Pogorszenie stanu mostu spowodowane opóźnionym powstawaniem ettringitu w oczepie belki jest...
następstwem dużego gradientu temperatury powstałego w trakcie twardnienia betonu w wyniku wydzielania ciepła hydratacji cementu w betonie masynym. Dodatkowo betonowanie tych elementów nastąpiło w lecie, w wysokiej temperaturze otoczenia, bez zastosowania domieszek opóźniających wiązanie czy dodatków mineralnych oraz nadmiernej ilości cementu w stosunku do początkowego składu betonu. Zamieszczona na rysunku 12.5 komputerowa symulacja rozkładu temperatury w belce oczepu pokazuje, że po 50 godzinach w środkowej części belki temperatura osiągała 80°C (rys. 12.6).

Kolejną uszkodzoną konstrukcją, związaną z opóźnionym powstawaniem ettringitu był most wantowy Bourgogne, zbudowany w latach 1989-1992 na rzece Saône w Chalon (rys. 12.7). Most ten ma łączną długość 351 m, składa się z 8 przęsła, rozpiętość główna wynosi 151,80 m, a pylony mają po 46 m wysokości. Płyta była wykonana z betonu sprężonego. Dolna część każdego pylonu składa się ze stopy, podpory i dwóch nóg. Podpora jest zawsze zanurzona częściowo w wodzie, ale czasem może znaleźć się (np. w czasie powodzi) całkowicie pod wodą. Zanurzone części podpór pylonów są gęsto spękane w wielu kierunkach, również w częściach nadziemnych (rys. 12.8). Rozwarcie szczelin wynosi od około jednego milimetra do kilku milimetrów. Największe pęknięcia o rozowaniu 1 cm wystąpiły na górnej powierzchni podpory.
Wyniki badań laboratoryjnych za pomocą mikroskopii skaningowej wykazały, że przyczyną uszkodzeń betonu było opóźnione powstawanie ettringitu.
Wystąpiło również spękanie belek mocujących dwa filary mostu Lodève, zbudowanego w latach 1980-1981. Każdy filar (rys. 12.9a) składa się z kolumny o przekroju prostokąta o szerokości 3,1 x 7,5 m oraz wysokości 14,5 m w przypadku północnego filara i 9,3 m w przypadku południowego filara. Każdy słup zwięńczony jest oczepem belki, który ma długość 14 m, szerokość 3,5 m, a wysokość waha się od 1,1 do 2,0 m. Belki zostały uformowane w lecie 1980 roku. Belka na północnym filarze ma wiele pionowych pęknięć, o maksymalnym rozwarciu od 0,2 do 1,2 mm (rys. 12.9b). W okresie od 1989 do 1997 roku nastąpiło znaczne zwiększenie stopnia zarysowania belki.

Szczegółowa kontrola w 1997 roku wykazała również brak drenażu z podpór (przyczółków i filarów), co powoduje narażenie elementów betonowych na środowisko wilgотne. Badania laboratoryjne (w szczególności metodą mikroskopii skaninowej) potwierdziły, że przyczyną uszkodzenie betonu filara było opóźnione powstanie ettringitu. Obliczony wzrost temperatury w środku belki oczepu był zbliżony do 80°C, a temperatura wynosząca około 70°C utrzymywała się przez prawie 5 dni. Zarówno wysoka temperatura po ułożeniu betonu, jak i środowisko wilgotne były przyczyną procesów destrukcyjnych w następstwie opóźnionego powstania ettringitu.
Most Bellevue został zbudowany w Nantes w latach 1988-1989 i otwarty w 1990 roku (rys. 12.10). Jest to most belkowy, składający się z 6 przęseł, o łącznej długości 385 m, ma 7 podpór (2 przyczółki i 5 filarów). Uszkodzenie wystąpiło w filarze zbudowanym w lecie 1989 roku, widoczne jako wielokierunkowe spękanie, typowe dla uszkodzeń spowodowanych przez wewnętrzne pęcznienie betonu (rys. 12.11). W dodatku mapa spęków znajduje się głównie w strefie pływów. Zakładająca wartość cementu wynosiła 380 kg/m³, stosunek w/c 0,54, a kruszywo pochodziło głównie ze skał krzemionkowych. Oszacowana maksymalna temperatura w środku pomostu osiągnęła 75°C.

Rys. 12.10. Ogólny widok mostu Bellevue

Rys. 12.11. Spękania w strefie pływów filara mostu Bellevue
Most Saint-Maurice de Beynost zbudowany w 1982 roku ma pomost wykonany z belek żelbetowych i składa się z trzech niezależnych przęseł. Pomost spoczywa na dwóch przyczółkach i dwóch pomostach pośrednich (rys. 12.12).

**Rys. 12.12. Widok fragmentu mostu Saint-Maurice de Beynost**

**Rys. 12.13. Spękania na końcu belki oczepowej wystawionej na opady deszczu**

Badania laboratoryjne pokazały typową mikrostrukturę betonu, charakterystyczną dla opóźnionego powstawania ettringitu, a obliczona maksymalna temperatura w środku belki oczewowej po jej wykonaniu wynosiła 69°C. Obliczenia wykazały również, że chłodzenie było powolne, a temperatura betonu pozostała większa niż 60°C przez 44 godziny.

Kolejny most Cheviré, w którym wystąpiły uszkodzenia został oddany do ruchu w 1991 roku i jest to most wyjątkowy (rys. 12.14). Jego całkowita długość wynosi 1562 m. Już po dziesięciu latach powstała siatka spękań na okładzinach niektórych podpór wiaduktu (rys. 12.15). W badaniach laboratoryjnych ustalono, że przyczyną destrukcji było opóźnione powstawanie ettringitu. Stopień uszkodzeń podpór był zmienny, rozwarcie pionowe wynosiło mniej niż 0,3 mm, podczas gdy inne wykazywały rozwarcie większe od 0,6 mm. Podpory mostu Cheviré wykonano w 1988 roku, a ich powierzchnia była narażona na opady atmosferyczne i podciąganie kapilarne betonu.

12. Przykłady konstrukcji uszkodzonych w wyniku reakcji alkaliów z krzemionką...

W związku z licznymi uszkodzeniami dużych elementów konstrukcji mostowych we Francji opracowano zalecenia dotyczące zapobieganiu powstawania uszkodzeń spowodowanych opóźnionym powstawaniem ettringitu [22]. Korzystano z danych dostępnych w literaturze naukowej i wyników szczegółowych badań uszkodzonych konstrukcji. Strategia ta [23] definiuje cztery poziomy zapobiegania, ze względu na maksymalną temperaturę w trakcie twardnienia w środowisku elementu konstrukcji betonowej oraz dobór składu betonu. Ze względu na skutki spowodowane wystąpieniem uszkodzeń, konstrukcje betonowe są podzielone na trzy категории. Zasada zapobiegania polega przede wszystkim na ograniczeniu ogrzewania betonu z określeniem temperatury maksymalnej, która może być osiągnięta w konstrukcji, a także czasu utrzymania się tej temperatury.

Przypadki ekspansji betonu w istniejących zaporach i budowlach inżynieryjnych są nadal zgłaszane. Wymagana żywotność większości zapór jest bardzo dłuższa, a większość uszkodzeń rozwija się bardzo powoli. Coraz powszechniej uważa się, że uszkodzenia mogą być wywołane różnymi mechanizmami ekspansji chemicznej, w tym niepożadanymi reakcjami alkaliów z kruszywem, wewnętrzną korozją siarczanową spowodowaną opóźnionym powstawaniem ettringitu [24].

Doświadczenia dotyczące uszkodzeń betonu w tamach zostały podsumowane w 2007 roku podczas Konferencji w Granadzie, w Hiszpanii [25] i przedstawione...
w raporcie przez Crawleya i Buila [26]. Oceny te obejmują szerszy zakres ekspan- sywnych reakcji chemicznych. Dodatkowe przypadki i opinie zostały zaprezento- wane na ICOLD 2011 w Lucernie przez Crawleya i Scrivener [27], Saussea i Fa- brea [28], Camelo [29] i Amberga [30]. Liczba nowych przypadków nadal rośnie, ze względu na rozpoznawanie różnych rodzajów ekspansywnych reakcji chemicz- nych w betonie i teraz uznano, że zjawisko to może trwać przez dłuższy okres niż początkowo sądzono. Biorąc pod uwagę powszechne zagrożenie ekspan- sją wska- zano działania, które będą potrzebne, aby większość tam nie uległa uszkodzeniom w przyszłości, w okresie użytkowania przekraczającym 30 do 50 lat. Większość reakcji prowadzących do zmniejszenia trwałości tych budowli to nadal reakcje alkaliów z kruszywem, ale inne mniej poznane reakcje chemiczne, także opóźnione powstawanie ettringitu te- ż odgrywają czasami ważną rolę.

Przeprowadzona kontrola pali mostowych (narażonych na warunki morskie) w Nowej Zelandii pokazała rozległe ich pęknięcia, łuszczenie i powierzchniową erozję prefabrykatów z betonu sprężonego, przypadające w konstrukcji mostowej poniżej wysokiego poziomu odpływu (rys. 12.16).

**Rys. 12.16.** a) spękania słupa spowodowane reakcją alkaliów z krzemionką i/lub opóźnio- nego powstawania ettringitu, b) mniejsze spękania betonu wywołane reakcją alkaliów z krzemionką i/lub opóźnionym powstawaniem ettringitu

Badania wykazały, że uszkodzenia zostały spowodowane przez wzajemne współdziałanie dwóch procesów w betonie: reakcji alkaliów z krzemionką i opóź- nionego powstawania ettringitu [31-33]. Ten rodzaj uszkodzenia nie jest łatwy do


Badania wykazały, że w drobnym i grubym kruszywie stosowanym w betonie w konstrukcjach Southland i Nelson zawarty był kwarc mikrokrystaliczny lub

Rys. 12.17. a) rozległe spekanie pala (konstrukcja w Nelson), b) spekanie pala poniżej strefy pływów (konstrukcja w Southland)
w stanie naprężeń. Innym często stosowanym kruszywem w Southland był kruszyw andezyt połączony z piaskiem kwarcowym zawierającym kwarc mikrokrystaliczny i w stanie naprężeń. Podstawowe badania petrograficzne próbek pobranych z prefabrykowanych pali pozwoliły na stwierdzenie reakcji alkaliów z krzemionką, a próbki z jednej konstrukcji wykazały również udział opóźnionego powstawania ettringitu. Z tego względu reakcja alkaliów z krzemionką, jako przy-


czyna uszkodzeń konstrukcji betonowych, wydaje się być bardziej powszechne niż opóźnione powstawanie ettringitu.

Dość częste występowanie reakcji alkaliów z krzemionką uzasadnia stwierdzenie, że temperatura betonu w początkowym okresie twardnienia przekroczyła 60°C, co potwierdza sporadyczne występowanie opóźnionego powstawania ettringitu. Obserwowano występowanie produktów reakcji alkaliów z krzemionką wskazuje również na możliwość reakcji kruszywa w Nowej Zelandii, zawierającego kwarc mikrokrystaliczny lub w stanie naprężeń z wodorotlenkami sodu i potasu zawartymi w roztworze w porach betonu.

**Literatura**


12. Przykłady konstrukcji uszkodzonych w wyniku reakcji alkaliów z krzemionką...


[16] Ng See King, Ku M. Sani, Ku Mahamud, Bridge problems in Malaysia.


Streszczenie

KOROZJA WEWNĘTRZNA BETONU

Praca obejmuje ważne zagadnienia w chemii betonu dotyczące jego trwałości. Przedstawiono w niej najczęściej spotykane procesy korozji wewnętrznej obejmujące reakcję alkaliów z kruszywem krzemionkowym i węglanowym oraz opóźnione powstawanie ettringitu. Poruszone podstawowe zagadnienia mechanizmów przebiegu tych procesów korozjonych oraz podano charakterystykę składników betonu i czynników technologicznych wywierających niekorzystny wpływ na destrukcję betonu. Zawarto również istotne metody zapobiegania korozji wewnętrznej oraz stosowane metody badań. Omówiono przykłady uszkodzeń konstrukcji betonowych spowodowanych korozją wewnętrzną oraz przyczyny współwystępowania reakcji alkaliów z krzemionką i opóźnionego ettringitu.

Książka jest bogato ilustrowana wykresami, które ułatwiają szybkie poznanie wpływu różnych czynników na korozję wewnętrzną betonu. Zawiera także wiele tablic oraz cytowania głównie prac oryginalnych.

Monografia „Korozja wewnętrzna betonu” przeznaczona jest dla pracowników naukowych wyższych uczelni i instytutów badawczych oraz studentów kierunków technicznych, budownictwa i inżynierii materiałów, dla których może stanowić pomoc dydaktyczną.

Summary

INTERNAL CORROSION OF CONCRETE

The book provides fundamental information about how the chemistry of concrete affects its durability. The most common processes of internal corrosion are discussed: two forms of alkali-aggregate reaction – alkali silica reaction and alkali carbonate reaction – and the delayed Ettringite formation. The basic mechanisms of these processes are described along with the inherent properties of concrete ingredients and technological factors that lead to concrete deterioration. Important methods are further described for corrosion prevention, protection and investigation. Examples of damage to concrete structures are provided and discussed together with the causes of co-occurrence of alkali silica reaction and delayed Ettringite formation.

The book contains numerous diagrams and tables illustrative of various factors which influence the initiation and development of internal corrosion in concrete. The literature cited in the book consists mostly of original works.

The monograph under the title „Internal Corrosion of Concrete” is addressed to professionals, researchers and civil engineering and material engineering students for whom it may serve as a reference book.